SDNET2018是带注释的图像数据集,用于训练,验证和确定基于人工智能的混凝土裂缝检测算法。SDNET2018包含超过56,000张开裂和未开裂的混凝土桥面板,墙壁和人行道的图像。 Structural Defects Network (SDNET) 2018_datasets..txt Structural Defects Network (SDNET) 2018_datasets..zip
2021-10-27 18:55:32 499.45MB 数据集
1
华为HCIP-access network(H35-211-V2.0)题库,稳过
2021-10-27 17:04:56 3.14MB 华为 HCIP access
CompTIA Network+ Certification All-in-One Exam Guide, Seventh Edition (Exam N10-007) By 作者: Mike Meyers ISBN-10 书号: 1260122387 ISBN-13 书号: 9781260122381 Edition 版本: 7 出版日期: 2018-06-26 pages 页数: 1463 Fulfilling the promise of the All-in-One series, this complete reference serves both as a study tool and a valuable on-the-job reference that will serve readers beyond the exam. CompTIA Network+ Certification All-in-One Exam Guide, Seventh Edition (Exam N10-007) also includes access to free video training and interactive hands-on labs and simulations that prepare you for difficult performance-based questions. A valuable pre-assessment test enables readers to gauge their familiarity with the test’s objectives and tailor an effective course for study. Contains complete coverage of every objective for the CompTIA Network+ Certification exam Written by CompTIA training and certification guru Mike Meyers Electronic content includes the Total Tester exam simulator with over 100 practice questions, over an hour of training videos, and a collection of Mike Meyers’ favorite shareware and freeware networking utilities Chapter 1 Network Models Chapter 2 Cabling and Topology Chapter 3 Ethernet Basics Chapter 4Modern Ethernet Chapter 5 Installing a Physical Network Chapter 6TCP/IP Basics Chapter 7 Routing Chapter 8 TCP/IP Applications Chapter 9 Network Naming Chapter 10 Securing TCP/IP Chapter 11 Advanced Networking Devices Chapter 12 IPv6 Chapter 13 Remote Connectivity Chapter 14 Wireless Networking Chapter 15 Virtualization and Cloud Computing Chapter 16 Mobile Networking Chapter 17 Building a Real-World Network Chapter 18 Managing Risk Chapter 19 Protecting Your Network Chapter 20 Network Monitoring Chapter 21 Network Troubleshooting Appendix A Objective Map:CompTIA Network+ Appendix B Create Your Study Plan Appendx C About the Online Content
2021-10-27 16:03:12 94.59MB Network
1
合流 适用于Python的时间序列实用程序库。 特征: 时间间隔均匀/不均匀的类 不等距时间序列的() 将等距时间序列转换为数据集() 时间序列的预测包装,例如keras() 安装 要求: Python3.5+ 安装: git clone https://github.com/kweimann/conflux.git cd conflux pip install . 例子 插补 有关完整的示例,请参见examples/interpolation.py 。 # number of observations n = 25 # time interval i.e. first and last timestamp t0 , tn = [ 0 , 200 ] # function producing observation value from observation ti
1
Spinger中的书籍 介绍关于社交网络
2021-10-27 01:11:56 5.23MB social network
1
使用MCNN进行人群计数-MindSpark Hackathon 2018 使用多列卷积神经网络对ShanghaiTech数据集进行人群计数。 这是CVPR 2016论文“通过多列卷积神经网络进行单图像人群计数”的非正式实施。 注意:可以做出预测。 有关热图生成的工作正在进行中。 安装 安装Tensorflow和Keras 安装OpenCV 克隆此存储库(以防您不想训练模型并希望使用预先训练的模型)。 资料设定 从以下位置下载ShanghaiTech数据集: 投寄箱: ://www.dropbox.com/s/fipgjqxl7uj8hd5/ShanghaiTech.zip dl
2021-10-26 20:30:23 6.2MB python neural-network tensorflow matlab
1
这是关于网络模型与多目标优化遗传算法的电子书,高清,最新版本,经典著作,英文版
2021-10-26 19:07:40 23.54MB Networ Geneti
1
压缩文件包括两本最经典的Neural Network Introduction to Neural Networks for Java, 2nd Edition Jeff Heaton Introduction to the Math of Nerural Newtork Jeff Heaton
2021-10-26 18:45:18 3.76MB Neural Network 神经网络
1
深度神经网络自监督视觉特征学习综述 为了在计算机视觉应用中学习得到更好的图像和视频特征,通常需要大规模的标记数据来训练深度神经网络。为了避免收集和标注大量的数据所需的巨大开销,作为无监督学习方法的一个子方法——自监督学习方法,可以在不使用任何人类标注的标签的情况下,从大规模无标记数据中学习图像和视频的一般性特征。本文对基于深度学习的自监督一般性视觉特征学习方法做了综述。首先,描述了该领域的动机和一些专业性术语。在此基础上,总结了常用的用于自监督学习的深度神经网络体系结构。接下来,回顾了自监督学习方法的模式和评价指标,并介绍了常用的图像和视频数据集以及现有的自监督视觉特征学习方法。最后,总结和讨论了基于标准数据集的性能比较方法在图像和视频特征学习中的应用。 https://ieeexplore.ieee.org/document/9086055 https://www.zhuanzhi.ai/paper/0e9852bb57c7fe00cc59723fc0ee899f 引言 由于深度神经网络具有学习不同层次一般视觉特征的强大能力,它已被作为基本结构应用于许多计算机视觉应用,如目标检测[1]、[2]、[3]、语义分割[4]、[5]、[6]、图像描述[7]等。从像ImageNet这样的大规模图像数据集训练出来的模型被广泛地用作预训练模型和用于其他任务的微调模型,主要有两个原因:(2)在大规模数据集上训练的网络已经学习了层次特征,有助于减少在训练其他任务时的过拟合问题;特别是当其他任务的数据集很小或者训练标签很少的时候。 深度卷积神经网络(ConvNets)的性能在很大程度上取决于其能力和训练数据量。为了增加网络模型的容量,人们开发了不同类型的网络架构,收集的数据集也越来越大。各种网络,包括AlexNet [9], VGG [10], GoogLeNet [11], ResNet [12], DenseNet[13]和大规模数据集,如ImageNet [14], OpenImage[15]已经被提出训练非常深的ConvNets。通过复杂的架构和大规模的数据集,ConvNets的性能在许多计算机视觉任务[1],[4],[7],[16],[17],[18]方面不断突破先进水平。 然而,大规模数据集的收集和标注是费时和昂贵的。ImageNet[14]是pre-training very deep 2D convolutional neural networks (2DConvNets)中应用最广泛的数据集之一,包含约130万张已标记的图像,覆盖1000个类,而每一幅图像由人工使用一个类标签进行标记。与图像数据集相比,视频数据集由于时间维度的原因,其采集和标注成本较高。Kinetics数据集[19]主要用于训练ConvNets进行视频人体动作识别,该数据集由50万个视频组成,共600个类别,每个视频时长约10秒。许多Amazon Turk工作人员花了大量时间来收集和注释如此大规模的数据集。 为了避免费时和昂贵的数据标注,提出了许多自监督方法来学习大规模无标记图像或视频的视觉特征,而不需要任何人工标注。一种流行的解决方案是提出各种各样的前置任务让网络来解决,通过学习前置任务的目标函数来训练网络,通过这个过程来学习特征。人们提出了各种各样的自监督学习任务,包括灰度图像着色[20]、图像填充[21]、玩图像拼图[22]等。藉口任务有两个共同的特性:(1)图像或视频的视觉特征需要被ConvNets捕捉来解决前置任务;(2)监控信号是利用数据本身的结构(自我监控)产生的。 自监督学习的一般流程如图1所示。在自监督训练阶段,为ConvNets设计预定义的前置任务,并根据数据的某些属性自动生成前置任务的伪标签。然后训练卷积神经网络学习任务的目标函数。当使用前置任务进行训练时,ConvNet的较浅的块集中于低级的一般特征,如角、边和纹理,而较深的块集中于高级任务特定的特征,如对象、场景和对象部分[23]。因此,通过藉由任务训练的ConvNets可以学习内核来捕获低级特征和高级特征,这对其他下游任务是有帮助的。在自监督训练结束后,学习到的视觉特征可以作为预训练的模型进一步转移到下游任务中(特别是在数据相对较少的情况下),以提高性能和克服过拟合。通常,在有监督的下游任务训练阶段,仅从前几层传递视觉特征。
2021-10-26 17:06:00 2.55MB 深度学习
1
实验题目:试设计一个反馈网络存储下列目标平衡点:T= [ 1 -1; -1 1 ]; 并用6组任意随机初始列矢量,包括一组在目标平衡点连线的垂直平分线上的一点作为输入矢量对所设计的网络的平衡点进行测试,观察3次循环的每一次的输出结果。给出最后收敛到各自平衡点(或不稳定的平衡点)结果的次数。
1