冷水机MLR 此存储库中的代码使用多元线性回归,该回归从实际操作数据中学习,以在 0.013 +/- 0.017(平均绝对误差 +/ 1 标准偏差)或 5% 误差的 kW/Ton 范围内建模和预测离心式冷水机性能0.6。 像这样的机器学习模型可用于优化冷却器和系统能效。 有兴趣的人可以通过添加更多有用的特征、更好地清理数据以及尝试新的机器学习算法来试验和改进这个模型。 数据集: Date_Time = excel 串行格式的日期和时间 KWperTon = 每吨冷却量测得的 kW Teo = 蒸发器出口处的水温(华氏度) Tei = 蒸发器入口处的水温(F 级) Fevap = 通过蒸发器的水流量 (gpm) Tci = 冷凝器入口处的水温(华氏度) Tco = 冷凝器出口处的水温(度数 F) Fcond = 通过冷凝器的水流量 (gpm) Pei = 蒸发器入口压力读
2022-05-30 19:18:33 631KB Python
1
一元线性回归,最小二乘法,C++语言VS2008下调试通过,可直接使用,有注释。
2022-05-30 17:46:02 470KB C++ 一元线性回归 直线拟合 最小二乘
1
空气质量预测 近年来,空气污染急剧增加,并且对所有生物造成的影响更糟。 世界上大多数国家都在与日益增加的空气污染水平作斗争。 因此,控制和预测空气质量指数已成为必要。 在此研究项目中,我们将实施数据挖掘和机器学习模型来预测AQI并将AQI归类。 对于AQI预测,我们已经实现了五个回归模型主成分,偏最小二乘法,留一维CV的主成分,留一维CV的偏最小二乘,多个印度城市的多元回归AQI数据。 根据AQI的值,AQI指数进一步分为6个不同的类别,即“好,满意,中,差,非常差和严重”。 为了预测AQI桶,我们使用重复CV分类算法开发了三种分类模型,分别是多项式Lo​​gistic回归和K最近邻和K最近邻。 来自印度不同城市的空气质量数据集,具有留一法交叉验证的PLS模型。
2022-05-30 17:02:47 11KB R
1
基于50万亚马逊美食评论数据集的评论分类系统 Review classification system based on 500 thousand Amazon gourmet review data 数据集下载地址Data set download address: 1.http://download.csdn.net/download/huangyueranbbc/9935028 2.https://www.kaggle.com/snap/amazon-fine-food-reviews 需要更多资源请关注。 Github: https://github.com/huangyueranbbc
2022-05-29 21:11:41 73B 决策树 逻辑回归 分类 spark
1
在时间和空间调制的傅里叶变换成像光谱仪推扫过程中在此过程中,光谱仪平台的运动状态可能会有所不同。 因此,从图像序列偏离使用高平台稳定性获得的理想干涉图。 恢复的目标光谱将无法反映真实的目标特征。 我们采用目标跟踪来获取目标位置在图像序列中通过建议的核回归,并使用相对偏差方法确定目标强度,以及使用非均匀快速傅立叶变换算法的频谱图恢复。 我们在模拟和实验获得的航拍图像上测试了我们的算法,并通过与准确的频谱图,证明了所提方法的有效性。
2022-05-29 15:08:05 1.31MB Fourier optics and signal
1
系统实现的功能主要包括数据获取、数据分析及预测、数据展示、聚类分析、K线图可视化。
2022-05-29 00:21:53 77.14MB python 线性回归
1
matlab卷积神经网络训练(回归模型)
2022-05-28 19:07:09 3KB matlab cnn 回归 综合资源
matlab开发-多类数据的线性回归,每类数据具有不同的斜率。该函数对分类为两个不同类别的数据进行OLS和RMA回归
2022-05-28 16:53:37 51KB 未分类
1
回归预测 | MATLAB实现LSTM(长短期记忆神经网络)多输入单输出(完整源码和数据) 多输入单输出,运行环境MATLAB2018b及以上。