matlab如何找k-means源代码该网站包含用于使用WiFi进行手语识别的通道状态信息(CSI)轨迹的数据集。 引用论文 马永森,周刚,王双权,赵宏阳和荣伍伯。 2018年。SignFi:使用WiFi进行手语识别。 程序。 ACM互动。 暴民。 可穿戴的无处不在的技术。 2,1,第23条(2018年3月),共21页。 DOI: 读者还可以查看以下文章,以获取有关通过通道状态信息进行WiFi感应的更多详细信息。 马永森,周刚和王双权。 2019。带有信道状态信息的WiFi传感:一项调查。 ACM计算。 生存52,3,Article 46(2019年6月),36页。 DOI: 档案文件 该存储库包含以下文件。 您同意下载并使用这些文件。 档案文件 描述 尺寸 在实验室环境中,针对276个签名字的分段下行链路CSI迹线和地面真相标签。 一个用户执行了5,520个276个手势手势的实例。 1.44GB 在实验室环境中,对276个签名字进行了分段的上行链路CSI跟踪和地面真相标签。 一个用户执行了5,520个276个手势手势的实例。 1.33GB 家庭环境中276个符号词的分段下行链路和上行
2021-12-03 21:10:39 100.15MB 系统开源
1
一个很实用的文档,运用卷积神经网络实现自然语言处理的简单教程。简单介绍了卷积神经网络,以及在自然语言处理领域的应用,附有常见的模型框架。
2021-12-03 20:52:50 573KB 自然语言处理 卷积神经网络
1
使用Matlab软件,运用简单卷积神经网络实现手写数字识别。
2021-12-03 16:26:05 24.98MB 卷积神经网络 Matlab
1
基于卷积神经网络和PCA的人脸识别
2021-12-02 20:52:13 2.22MB PCA 人脸识别 NNC
1
本文来自csdn,本文主要通过代码实例详细介绍了卷积神经网络(CNN)架构中的卷积层,池化层和全连接层,希望对您的学习有所帮助。卷积神经网络的基础内容可以参考:机器学习算法之卷积神经网络卷积神经网络一般包括卷积层,池化层和全连接层,下面分别介绍一下2.1卷积层卷积神经网络里面的这个卷积和信号里面的卷积是有些差别的,信号中的卷积计算分为镜像相乘相加,卷积层中的卷积没有镜像这一操作,直接是相乘和相加,如下图所示最左边的是卷积的输入,中间的为卷积核,最右边的为卷积的输出。可以发现卷积计算很简单,就是卷积核与输入对应位置相乘然后求和。除了图中绿颜色的例子,我们可以计算一下图中红色圈对应的卷积结果:(-
1
在语音识别中,卷积神经网络(convolutional neural networks,CNNs)相比于目前广泛使用的深层神经网络(deep neural network,DNNs),能在保证性能的同时,大大压缩模型的尺寸.本文深入分析了卷积神经网络中卷积层和聚合层的不同结构对识别性能的影响情况,并与目前广泛使用的深层神经网络模型进行了对比.在标准语音识别库TIMIT以及大词表非特定人电话自然口语对话数据库上的实验结果证明,相比传统深层神经网络模型,卷积神经网络明显降低模型规模的同时,识别性能更好,且泛化能力更强.
1
提出了一种利用图像深度学习解决无线电信号识别问题的技术思路。首先把无线电信号具象化为一张二维图片,将无线电信号识别问题转化为图像识别领域的目标检测问题;进而充分利用人工智能在图像识别领域的先进成果,提高无线电信号识别的智能化水平和复杂电磁环境下的识别能力。基于该思路,提出了一种基于图像深度学习的无线电信号识别算法——RadioImageDet 算法。实验结果表明,所提算法能有效识别无线电信号的波形类型和时/频坐标,在实地采集的12种、4 740个样本的数据集中,识别准确率达到86.04%,mAP值达到77.72,检测时间在中等配置的台式计算机上仅需33 ms,充分验证了所提思路的可行性和所提算法的有效性。
1
神经网络:用Python语言从零开始实现的卷积神经网络,LSTM神经网络和神经网络
2021-12-02 11:10:51 349KB python deep-learning numpy jupyter-notebook
1
颜色分类leetcode BCNN 这是贝叶斯卷积神经网络的 Chainer 实现。 (Keras 和 PyTorch 也可以重新注入:,) 在这个项目中,我们假设了以下两种场景,尤其是医学成像。 使用 2D U-Net 进行二维分割/回归。 (例如,2D X 射线、腹腔镜图像和 CT 切片) 使用 3D U-Net 进行三维分割/回归。 (例如,3D CT 体积) 这是以下作品的一部分。 @article{hiasa2019automated, title={Automated muscle segmentation from clinical CT using Bayesian U-net for personalized musculoskeletal Modeling}, author={Hiasa, Yuta and Otake, Yoshito and Takao, Masaki and Ogawa, Takeshi and Sugano, Nobuhiko and Sato, Yoshinobu}, journal={IEEE Transactions on Medica
2021-12-01 15:18:38 15.63MB 系统开源
1
我们介绍了带变分推理的贝叶斯卷积神经网络,这是卷积神经网络(CNN)的一种变体,其中权重的难处理的后验概率分布是由Backprop的Bayes推断的。 我们证明我们提出的变分推断方法是如何实现的性能相当于频率论推理在几个数据集(MNIST,CIFAR10,CIFAR100),如所描述的相同结构。 贝叶斯vs频频方法中的过滤器权重分布 整个CNN的全贝叶斯视角 图层类型 该存储库包含两种类型的贝叶斯lauer实现: BBB(Backprop的Bayes): 基于。 该层分别对所有权重进行采样,然后将其与输入组合以从激活中计算出一个样本。 BBB_LRT(使用本地重新参数化技巧的Backprop进行Bayes操作): 这一层与本地重新参数伎俩结合贝叶斯通过Backprop。 这个技巧使得可以直接从激活中的分布中采样。 制作自定义贝叶斯网络? 要创建自定义贝叶斯网络,请继承layers.m
2021-12-01 15:13:56 46.78MB python pytorch bayesian-network image-recognition
1