针对现有模糊信息粒化方法构建的高层信息粒不能完全包含底层数据信息、预测时间范围受限等问题,提出了一种插值梯形模糊信息粒化方法来预测瓦斯浓度趋势。对原始瓦斯浓度时间序列进行离散化形成若干子序列,计算每个子序列窗口的最大值与最小值形成梯形上沿的边界,通过对每个子序列窗口数据进行插值计算,形成新的瓦斯浓度时间序列窗口,对新的瓦斯浓度时间序列窗口采用数据遍历寻优的方式计算梯形下沿的边界,进而形成瓦斯浓度粒化区间序列。针对现有评价方法无法准确评价信息粒化效果的问题,提出了一种基于权值的粒化评价方法,通过加权均方根误差对粒化效果进行整体评价。实验结果表明,通过该方法对信息进行粒化的效果明显优于现有模糊粒化方法,并且粒化效果不随粒化窗口的增大而减小,具有较高的稳定性与鲁棒性。
1