股票评估工具 此回购包含一组工具,投资者可以使用这些工具来更好地了解他/她感兴趣的股票。它不建议买卖股票,而是有助于形成对股票的有根据的猜测。潜在的未来股价走势,并因此对要分析的股票做出买/卖/持有决定。 这里包括的工具不是唯一可以使用的工具。 之所以将它们包括在内,是因为我相信没有任何一种工具或模型可以充分理解导致股价波动的所有因素。 此仓库中包含的工具集可分为: 工具-EMA信号,布林带。 -通过YahoofFinancials和YFinance API使用财务数据。 -ARIMA随机森林。 -随机森林。 模型-LSTM。 模型-蒙特卡洛模拟。 -NLP情感分析。 模型-基于Markowitz的Efficient Frontier和CVaR。 我相信,通过将上述分析工具一起使用,就可以对未来的股价做出正确的预测。 如何使用储存库 没有预定义的方式来使用存储库中包
1
使用PyTorch进行情感分析 存储库将引导您完成构建完整的情感分析模型的过程,该模型将能够预测给定评论的极性(无论表达的观点是肯定的还是负面的)。 要在其上训练模型的数据集是流行的IMDb电影评论数据集。 目录 第一个笔记本涵盖了从原始数据集中加载数据,特征提取和分析,文本预处理以及训练/验证/测试集准备的过程。 第二篇教程包含有关如何设置词汇对象的说明,该对象将负责以下任务: 创建数据集的词汇表。 根据稀有词出现和句子长度过滤数据集。 将单词映射到其数字表示形式(word2index)和反向(index2word)。 启用预训练词向量的使用。 此外,我们将构建BatchItera
1
CS291K 使用CNN-LSTM组合神经网络模型对Twitter数据进行情感分析 论文: : 博客文章: : 动机 该项目旨在扩展我们以前使用简单的前馈神经网络(位于此处: & )进行的情绪分析工作。 相反,我们希望尝试使用Tensorflow构建组合的CNN-LSTM神经网络模型,以对Twitter数据进行情感分析。 依存关系 sudo -H pip install -r requirements.txt 运行代码 在train.py上,更改变量MODEL_TO_RUN = {0或1} 0 = CNN-LSTM 1 = LSTM-CNN 随时更改其他变量(batch_
1
情感分析分类 先决条件 安装依赖项 pip install -r requirements.txt 安装Spacy英语数据 python -m spacy download en 框架 火炬 数据集 Cornell MR(电影评论)数据集 实施 RNN LSTM 双LSTM LSTM +注意 有线电视新闻网
2021-11-02 09:33:23 6.45MB pytorch lstm rnn bi-lstm
1
Classify the sentiment of sentences from the Rotten Tomatoes dataset 文件train.tsv test.tsv 有网可以自己下https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
2021-10-27 21:20:40 1.9MB 数据集 Rotten Tomatoes
1
Sentiment-Analysis:情感分析系统,用于分析用户评论是积极还是消极。其中使用了逻辑回归函数,决策树,支持向量机,神经网络等不同的模型进行训练
2021-10-27 20:25:38 1.1MB 系统开源
1
基于Python的情感分析,包括数据预处理,向量化(两种方法),4种模型比较,包括SVM,CNN,LSTM和混合CLSTM,绝对适合初学者或者了解情感分析,文本分析的人………………………………
2021-10-24 21:29:32 5KB 情感分析 深度学习 Python
1
俄语中的推文情感分析:使用带有Word2Vec嵌入的卷积神经网络(CNN),对俄语中的推文进行情感分析
2021-10-19 17:42:54 449KB nlp machine-learning tweets sentiment-analysis
1
使用Pytorch [WIP]进行情感分析 更新/注意:大家好,我不再使用此存储库了! 请自行决定使用,因为我认为强烈建议您不要使用它。 实际上,这只是我在Pytorch首次推出时对其进行的测试。 由于我基本上是用TF编写代码,因此无法回答此存储库中的任何问题。 另外,大约一年多以前,我对此进行了编码。 谢谢! 在SemEval 2014上使用RNN / GRU / LSTM进行基于方面的情感分析的Pytorch示例。 目前,我们实现了基线LSTM / RNN / GRU模型,该模型在最后一个输出上具有线性层,以及基于目标的情感分析(ABSA)的依赖于目标的TD-LSTM(Tang等,2015)模型。 序列从前面填充零,以便最后一个向量不为零。 我们使用keras pad序列将它们填充在prepare脚本中。 到目前为止,没有任何东西被掩盖,我们填充到最大长度。 有两种预测模式,即
2021-10-16 18:26:34 409KB deep-learning sentiment-analysis pytorch lstm
1
MMSA 多模态情感分析中代码的 Pytorch 实现。 注意:我们强烈建议您首先浏览我们代码的整体结构。 如果您有任何疑问,请随时与我们联系。 支持模型 在这个框架中,我们支持以下方法: 类型 型号名称 从 单任务 单任务 —— 单任务 单任务 单任务 单任务 单任务 (无 CTC) 单任务 米萨 米萨 多任务 MLF_DNN MMSA 多任务 MTFN MMSA 多任务 MLMF MMSA 多任务 自我_MM 自我MM 结果 详细结果见results/result-stat.md 用法 克隆代码 克隆这个 repo 并安装需求。 git clone https://github.com/thuiar/MMSA cd MMSA pip install -r requirements.txt 数据集和预训练的 berts 从以下链接下载数据集特征和
1