Heterogeneous Information Network
传统的同构图(Homogeneous Graph)中只存在一种类型的节点和边,当图中的节点和边存在多种类型和各种复杂的关系时,再采用Homo的处理方式就不太可行了。这个时候不同类型的节点具有不同的特征,其特征可能落在不同的特征空间中,如果仍然共享网络参数、同样维度的特征空间,又或者尝试将异构图映射到同构图中,根本无法学习到“异构”的关键,即无法探索到不同节点之间,监督标签之间的联系,而这又是十分重要的。
如上图著名的异构例子,学术网络图,它包含“论文”paper、“作者”author、“会议”venue和“机构”org等节点类
2023-02-11 20:56:14
384KB
al
OR
te
1