使用机器学习模型预测NBA结果
该的目的是为我的实验中获得的结果提供可视界面。 我试图预测从2021年3月31日起的NBA比赛结果。 为此,我将使用两个机器学习模型,一个逻辑回归模型和一个带有线性核的支持向量机。
直到3月31日,NBA总共踢了695场比赛。 由于大流行,今年的赛程表发生了变化,因此每支球队只能参加72场比赛,而不是通常的82场比赛。 因此,常规赛总共将有1080场比赛。 这个想法是用这695个游戏(约占65%)训练模型,并对其余游戏进行“实时测试”,每天更新预测和结果。
为了进行培训,我使用了3月31日之前所有NBA游戏的数据。多亏了nbastatR软件包,我才能够轻松抓取boxscore数据和其他统计信息。 我转换了数据并实现了功能,以计算最近10场比赛的球队统计数据的移动平均值,并计算ELO评分(有关ELO评分的详细信息,请参见和)。 因此,训练数据集包含48个列
1