前言 在以前学习和使用WinForm、ASP.NET WebForm、三层架构的时候,对于数据访问的实现,无论是什么逻辑,简单还是复杂,无论是执行SQL语句还是调用存储过程都要用到ADO.NET技术,通过封装好的SQLhelper类传入SQL语句和SqlParameter参数来操作数据库,使用起来还是有点麻烦呐~~~ 随着.Net学习的不断深入,学习过ASP.NET MVC知识体系时才逐渐开始了解和使用微软ORM系列的Entity Framework框架,通过使用EF可以方便快捷的操作数据库。我一共学习和使用了三种模式的EF(DBFirst[数据库优先]、ModelFirst[模型优先]、Co
2021-11-15 11:17:59 161KB .NET AS ef
1
中文命名实体识别 数据集 本项目尝试使用了多种不同的模型(包括HMM,CRF,Bi-LSTM,Bi-LSTM + CRF)来解决中文命名实体识别问题,数据集用的是论文ACL 2018 中收集的简历数据,数据的格式如下,它的每个行由一个字及其对应的标注组成,标注集采用BIOES,句子之间用一个空行替换。 美 B-LOC 国 E-LOC 的 O 华 B-PER 莱 I-PER 士 E-PER 我 O 跟 O 他 O 谈 O 笑 O 风 O 生 O 该数据集就位于项目目录下的ResumeNER文件夹里。 运行结果 下面是多种不同的模型以及这Ensemble这四个模型预测结果的准确率(取最好): HMM 慢性肾功能衰竭 双线性STM BiLSTM + CRF 合奏 召回率 91.22% 95.43% 95.32% 95.72% 95.65% 准确率 91.49% 95.43% 95.37% 95.74% 95.69% F1分数 91.30% 95.42% 95.32% 95.70% 95.64% 最后一列Ensemble是将这四个模型的预测结果结合起来,使用“
2021-11-13 17:18:20 24.44MB nlp hmm crf named-entity-recognition
1
从数据库自动生成Code First代码工具
2021-11-10 08:55:09 331KB ef Entity Framework CodeFirst
1
Entity SQL学习
2021-11-09 17:11:07 85KB Entity SQL LINQ
1
使用Tensorflow进行临床实体识别 此仓库使用Tensorflow实现了CER模型(字符嵌入+单词嵌入+ BLSTM + CRF)。 合奏训练后的最新表现(测试集上的F1分数在84到85之间)。 有关更多详细信息,请检查。 使用预先训练的模型 使用TensorFlow可以轻松加载预训练图。 预训练的模型在exp dir中。 将集成训练模型与 # pretrained ensemble of models models= " exp/adam.cap-2.char-100-100.word-300-300.lstm-1.p-0 exp/rmsprop.char-100-100.plstm-2 exp/rmsprop.cap-5.char-100-100.word-300-300.sru-1 exp/rmsprop.cap-5.char-100-300.word-300-300.l
2021-11-09 16:34:24 12.45MB Python
1
CCKS2020-Entity-Linking CCKS 2020: 面向中文短文本的实体链指任务 将官网下载好的数据保存在data文件夹中 每个人可以在notebooks文件中新建以自己名字命名的文件夹,并在其中用Jupyter Notebook编写实验代码
2021-11-03 20:51:58 226KB JupyterNotebook
1
Recent research has shown great progress on fine-grained entity typing. Most existing methods require pre-defining a set of types and training a multi-class classifier from a large labeled data set based on multi-level linguistic features. They are thus limited to certain domains, genres and languages. In this paper, we pro- pose a novel unsupervised entity typing framework by combin- ing symbolic and distributional semantics. We start from learn- ing general embeddings for each entity mention, compose the em- beddings of specific contexts using linguistic structures, link the mention to knowledge bases and learn its related knowledge rep- resentations. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representa- tions. This framework doesn’t rely on any annotated data, prede- fined typing schema, or hand-crafted features, therefore it can be quickly adapted to a new domain, genre and language. Further- more, it has great flexibility at incorporating linguistic structures (e.g., Abstract Meaning Representation (AMR), dependency rela- tions) to improve specific context representation. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework.
2021-11-03 14:24:06 995KB Entity
1
实体关系提取 基于TensorFlow的实体和关系提取。基于TensorFlow的实体和关系撤消,2019语言与智能技术竞赛信息撤除(实体与关系撤回)任务解决方案。 如果您对信息抽取论文研究感兴趣,可以查看我的博客。 抽象 该代码以管道式的方式处理实体及关系抽取任务,首先使用一个多标签分类模型判断句子的关系种类,然后将句子和可能的关系类型输入序列标注模型中,序列标注模型标注出句子中的实体,最终结合预测的关系和实体输出实体-关系列表:(实体1,关系,实体2)。 该代码以管道方式处理实体和关系提取任务。 首先,使用多标签分类模型来判断句子的关系类型。 然后,将句子和可能的关系类型输入到序列标签模
1
基于扩张神经网络(Divolved Convolutions)训练好的医疗领域的命名实体识别工具,这里主要引用模型源码,以及云部署方式供大家交流学习。 环境 阿里云服务器:Ubuntu 16.04 Python版本:3.6 Tensorflow:1.5 第一步:来一个Flask实例,并跑起来: 使用的是Pycharm创建自带的Flask项目,xxx.py from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello World!' if __name__ == '__main__': app.run() 执行python xxx.py就可以运行在浏览器中测试若直接在dos窗口中:输入命令也可测试。 第二部:服务器配置 服务器python版本为3.x 安装pi
2021-10-23 09:53:59 4.12MB Python
1
多任务学习专家 注意:从0.4.0开始,tf版本必须大于等于2.1。 安装 pip install bert-multitask-learning 它是什么 这个项目使用变压器(基于拥抱面部变压器)进行多模式多任务学习。 我为什么需要这个 在原始的BERT代码中,多任务学习或多GPU训练都不可行。 另外,该项目的初衷是NER,它在原始BERT代码中没有有效的脚本。 总而言之,与原始bert回购相比,此回购具有以下功能: 多模式多任务学习(重写大部分代码的主要原因)。 多GPU训练 支持序列标记(例如NER)和Encoder-Decoder Seq2Seq(带变压器解码器)。 支持哪些类型
1