详情介绍:https://blog.csdn.net/s1t16/article/details/128898122 为对股票价格的涨跌幅度进行预测,本文使用了基于长短期记忆网络(LSTM)的方法。根据股票涨跌幅问题, 通过对股票信息作多值量化分类,将股票预测转化成一个多维函数拟合问题。将股票的历史基本交易信息作为特征输入,利用神经网络对其训练,最后对股票的涨跌幅度做分类预测。
2024-02-27 16:46:39 1.63MB Python LSTM 课程设计
网上LSTM框架图不少,如果直接截图或下载,分辨率非常低。我自己用PPT重新画了一个LSTM的框架图,可以导出高清格式图片,放在投稿的小论文里面。导出方式如下: 1用office的powerpoint打开下载的LSTM.pptx文件; 2.在office中设置,保证可导出高分辨率图片,可参考https://blog.csdn.net/mbtt00/article/details/122343259,建议用注册表修改,然后导出tiff图片; 3.将导出的tiff图片直接复制到word中,即可完成高分辨率图片的方式
2024-02-27 16:45:48 74KB lstm 文档资料 人工智能 深度学习
Python基于LSTM模型实现预测股市源代码+模型+数据集
2024-02-27 16:37:52 3.92MB python lstm 数据集
NumpyDL:Numpy深度学习库 内容描述 NumpyDL是: 基于纯Numpy / Python 对于DL教育 特征 其主要特点是: 纯洁的脾气暴躁 原生于Python 基本支持自动区分 提供了常用的模型:MLP,RNN,LSTM和CNN 几个AI任务的示例 对于玩具聊天机器人应用 文献资料 可用的在线文档: 最新文件 开发文档 稳定文档 可用的离线PDF: 最新PDF 安装 使用pip安装NumpyDL: $ > pip install npdl 从源代码安装: $ > python setup.py install 例子 NumpyDL提供了一些AI任务示例: 句子分类 示例/lstm_sentence_classification.py中的LSTM 例子中的CNN / cnn_sentence_classification.py mnist手写识
2024-02-23 17:06:34 16.61MB deep-neural-networks deep-learning
1
基于贝叶斯优化长短期记忆网络(bayes-LSTM)的时间序列预测,matlab代码,要求2019及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-21 11:41:42 24KB 网络 网络 matlab lstm
1
lstm+arima.rarlstm+arima.rarlstm+arima.rar
2024-02-20 16:22:05 38KB lstm
1
使用LSTM-ARIMA模型进行混合预测,ARIMA做线性部分的预测,LSTM做非线性部分
2024-02-20 11:24:47 5KB LSTM LSTM预测 arima 非线性模型
1
MATLAB开发的LSTM深度学习网络来预测时间序列的工具箱-支持单时间序列和多元时间序列的预测
2024-02-18 16:01:02 4.25MB lstm MATLAB 深度学习 长短期记忆网络
1
内容概要:通过数据集电力变压器油温数据详细的介绍双向LSTM,以及其机制,运行原理,以及如何横向搭配单向的LSTM进行回归问题的解决。 所需数据:在本次的模型所需的数据是电力变压器油温数据,由国家电网提供,该数据集是来自中国同一个省的两个不同县的变压器数据,时间跨度为2年,原始数据每分钟记录一次(用 m 标记),每个数据集包含2年 * 365天 * 24小时 * 60分钟 = 1,051,200数据点。 每个数据点均包含8维特征,包括数据点记录日期,预测目标值OT(oil temperature)和6个不同类型功率负载特征。 适合人群:时间序列和深度学习初学者本文的模型比较简单,易于理解。 阅读建议:可以大致阅读以下,本文件只是一个简单实现版本,并不复杂。 能学到什么:能够从本文件当中读懂深度学习的代码实现过程,对于时间序列有一个简单的了解, (PS:如果你使用你自己的数据进行预测需要将时间列和官方数据集保持一致,因为在数据处理部分我添加了一部分特征工程操作,提取了一些时间信息,因为LSTM不支持时间格式的数据输入,需要转化为数字) 如果大家不懂的地方可以看我的文章部分有详细的讲解。
2024-01-31 13:39:26 441KB lstm python pytorch 深度学习
1
本文通过实战案例讲解TPA-LSTM实现多元时间序列预测,在本文中所提到的TPA和LSTM分别是注意力机制和深度学习模型,通过将其结合到一起实现时间序列的预测,本文利用有关油温的数据集来进行训练模型,同时将模型保存到本地,进行加载实现多步长预测,本文所利用的数据集也可以替换成你个人的数据集来进行预测(修改个人的数据集的地方本文也进行了标注),同时本文会对TPA和LSTM分别进行概念的讲解帮助大家理解其中的运行机制原理(包括个人总结已经论文内容)。TPA(Temporal Pattern Attention)注意力机制是一种用于处理时间序列数据的注意力机制。它的工作原理是在传统的注意力机制的基础上引入了时间模式的概念,以更好地捕捉时间序列中的重要模式和特征。LSTM(长短期记忆,Long Short-Term Memory)是一种用于处理序列数据的深度学习模型,属于循环神经网络(RNN)的一种变体,其使用一种类似于搭桥术结构的RNN单元。相对于普通的RNN,LSTM引入了门控机制,能够更有效地处理长期依赖和短期记忆问题,是RNN网络中最常使用的Cell之一。配合我的博客大家可以实现预测。
2024-01-21 09:53:02 2.04MB LSTM 深度学习 人工智能 时间序列预测
1