Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equations that can be used in various phases of road safety management cycle. The regression equations produced by NN can identify unsafe road segments, estimate how much safety has changed following a change in design, and quantify the effects of road geometric features and traffic information on road safety. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
2023-03-22 16:49:12 8.29MB neural networks deep learning
1
Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB®
2023-03-14 16:19:14 11.94MB matlab
1
MWC飞控板上位机设置,介绍了 RC rate、RC expo、P and I Level 、PITCH/ROLL/YAW PID and rate、ALT and VEL PID 等参数,MWC飞控板上位机介绍文档
2023-03-14 00:15:52 1.22MB MWC 飞控
1
SmartSketch 先进的图像合成功能可增强您的创造力 下面的视频演示! 学分 请在此处查看项目页面: : 在此处阅读论文: : 在此处查看源代码: : 特别感谢@AndroidKitKat帮助我们举办此活动! 设置 您需要将COCO数据集的预训练生成器模型安装到checkpoints/coco_pretrained/ 。 有关说明,请参见nvlabs/spade库。 确保使用pip3 install -r requirements.txt (在/backend文件夹中)安装了所有Python需求。 完成后,您应该可以使用python3 server.py运行服务器。 它将在端口80的0.0.0.0上运行(对于Windows用户,在127.0.0.1 )。 不幸的是,这些已硬编码到服务器中,现在您无法将CLI参数传递给服务器以指定端口和主机,因为PyTorch的内容
2023-03-10 22:05:47 7.58MB python3 nvidia spade image-synthesis
1
SELinux by example is the first complete, hands-on guide to using SELinux in production environments. Authored by three leading SELinux researchers and developers, it illuminates every facet of working with SELinux, from its architecture and security object model to its policy language. This book thoroughly explains SELinux sample policies including the powerful new Reference Policy showing how to quickly adapt them to your unique environment. It also contains a comprehensive SELinux policy language reference and covers exciting new features in Fedora Core 5 and the upcoming Red Hat Enterprise Linux version 5.
2023-03-10 19:03:40 26.67MB SELinux SEAndroid Security
1
在该项目中,使用自适应神经模糊推理系统 (ANFIS) 解决了 2R 平面机器人的逆运动学问题。 此代码包括 2-DOF 平面机器人的动画。
2023-03-10 13:16:56 12KB matlab
1
机器人抢点PointCloud 主要使用open3d,修改了registration的ransac部分源码 本人毕设使用RGBD相机的机器抓取,陆续更新 漏洞 可视化时遇到RunTimeError:GLFW错误,open3d github问题里有人试了设置python使用n卡,可解决报错卡退问题。 编译open3d二进制时cmake错误:缺少pybind11Target.cmake,手动编译pybind11源码,将编译得到的此文件复制到对应位置即可暂时解决问题,根治问题应该需要修改cmake生成文件相关代码。 open3d源码修改: ransac跳出条件,当达到一定fitness和rmse时跳出 class RegistrationResult()默认构造函数中修改fitness和rmse重新设置值
2023-03-10 09:51:13 132.16MB 系统开源
1
这是一个关于模糊控制在matlab中应用的教材,很容易上手和理解,对于学习模糊控制有很大的帮助
2023-03-09 10:15:48 15.55MB fuzzy
1
vs运行matlab代码使用MMSE标准对毫米波系统进行混合波束形成 介绍 Matlab仿真代码,用于使用MMSE准则进行毫米波系统的混合波束成形。 该论文于2019年1月发表在IEEE通信事务上。如果这些代码对您的工作有所帮助,您可以选择引用该论文,而不是必需的。 可以在以下位置找到本文的pdf文件: IEEE链接: Arxiv链接:。 另外,我建议我的最新工作是使用深度学习解决HBF设计问题。 这项工作可以参考 IEEE链接: Arxiv链接: 并且所有代码都在打开。 我仅针对窄带情况更新代码,但对宽带的扩展非常简单。 可以参考我的另一个名为“ August_mmwave”的存储库。 但是,后者的格式不好,因此不易阅读。 我现在没有足够的时间,所以也许将来会更新。 如何使用 这段代码确实是要使用的。 首先,您应该将所有软件包全部添加到路径中,以便可以使用这些功能。 然后,直接运行main_vs_SNR.m文件。 内容 这些代码包括我的论文中提到的几种算法,这些便捷的API都可以轻松引用所有这些算法。 结尾 由于时间限制,我最近不会更新它。 但是,如果您有任何问题,可以直接通过电子邮
2023-03-07 11:08:28 29KB 系统开源
1
乳腺癌预测应用程序使用 Flask-Python 在乳腺癌威斯康星州数据集上建立机器学习模型来预测癌症是良性还是恶性。 定义问题陈述 我们的主要目标是使用 Flask API 构建一个应用程序并部署在 Heroku 上以对乳腺癌是良性还是恶性进行分类。 使用此链接访问完整项目的文件夹 此文件夹包含连接到这 5 部分文章的 Python 代码: | | | | 通过这段代码,我们将学习: 如何在 Heroku 上使用 Flask API 部署模型? 数据来自威斯康星癌症数据集。 该数据由威斯康星大学麦迪逊分校的医院和William H. Wolberg博士收集。 阅读更多 与我联系
2023-03-05 10:43:23 66KB HTML
1