针对模型未知的多机械臂系统,利用多个独立的RBF神经网络,对每个子机械臂系统进行逼近,基于图论原理定义了每个子系统之间的同步耦合关系,结合滑模控制方法设计出一种机械臂无模型自适应同步控制器。通过神经网络权值的不断在线迭代过程,随机械臂工作任务的变化可以实现对其动力学模型的实时逼近,摆脱了数学模型的限制,扩大了控制器的应用范围,在初始误差较大的情况下也可以保证对期望轨迹实现快速跟踪,并且系统在载荷发生改变等不确定的情况下依然能够实现同步,提高了控制器的鲁棒性。最后通过Lyapunov稳定性分析和Matlab仿真对所设计的同步控制器进行了验证。
1
基于RBF神经网络的回归分析的matab实现
1
RBF网络的回归--非线性函数回归的实现.zip
2022-11-10 14:18:18 67KB py
1
在柴油机故障诊断中进行故障分类的RBF的程序设计
1
自己编写RBF神经网络程序,RBF神经网络隐层采用标准Gaussian径向基函数,输出层采用线性激活函数,其中数据中心、扩展常数和输出权值均用梯度法求解,它们的学习率均为0.001。其中隐节点数选为10,初始输出权值取[-0.1,0.1]内的随机值,初始数据中心取[-1,1]内的随机值,初始扩展常数取[0.1,0.3]内的随机值,输入采用[0 1]的随机阶跃输入
1
应用matlab编写的RBF神经网络算法,任意非线性函数逼近
1
通过GA算法优化RBF神经网络初始参数,以减小误差,提高诊断效率,对GA-BP故障诊断模型进行MATLAB仿真分析
2022-11-06 21:49:58 3KB 故障诊断 RBF BP GA优化RBF神经网络
1
RBF神经网络,,对水数据进行预测,希望大家相互借鉴学习。
2022-11-06 18:23:54 2KB RBF;matlab 神经网络预测 RBF预测 RBF
1
径向基函数/薄板样条二维图像变形。 [imo,mask] = rbfwarp2d(im, ps, pd, 方法) 输入: im:图像二维矩阵ps:二维源地标[n*2] pd: 2d destin 地标 [n*2] 方法: 'gau',r - 对于高斯函数 ko = exp(-|pi-pj|/r.^2); 'thin' - 对于薄板函数 ko = (|pi-pj|^2) * log(|pi-pj|^2) 输出: imo:输出矩阵mask : 输出矩阵的掩码,0/1 表示出/入边界佛罗里达州布克斯坦“主要翘曲:薄板样条和变形的分解。” IEEE 翻译模式肛门。 马赫。 英特尔。 11, 567-585, 1989。 灵感来自https://cn.mathworks.com/matlabcentral/fileexchange/24315-warping-using-thin-plate-spl
2022-11-04 21:11:17 117KB matlab
1
RBF网络的回归---实现非线性函数回归的实现
2022-10-31 11:18:27 67KB rbfnn函数 rbf实现 rbfnn 非线性回归
1