"三相桥式可控整流电路的MATLAB仿真" 三相桥式可控整流电路是电力电子技术中最重要的电路之一,也是应用最广泛的电路,不仅应用于一般工业领域,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。因此,对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有重要的现实意义。 三相桥式半控整流电路是三相桥式可控整流电路的一种, 由共阴极接法的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成。这种电路兼有可控和不可控的特性,共阳极组3个整流二极管总是自然换相点换流,使电流换到比阴极电位更低的一相;而共阴极组3个晶闸管则要在触发后才能换到阳极电位高的一个。 三相桥式半控整流电路的工作情况可以通过MATLAB软件的Power System工具箱进行仿真,并对其带纯电阻负载及电阻电感性负载时的工作情况进行对比分析与研究。仿真结果验证了所建模型的正确性。 在仿真中,假定负载电感L足够大,可以认为负载电流在整个稳态工作过程中保持恒值,因此不论控制角为何值,负载电流i总是单向流动,而且变化很小。一个周期中参与导通的管子及输出整流电压的情况如表1所示。 表1 三相桥式半控整流电路电阻负载ct=0时的晶闸管和二极管工作情况 晶闸管触发角a=0时,对于共阴极组所接的3个晶闸管,阳极所接交流电压最高的1个导通;同理,对于共阳极组阴极所接交流电压最低的1个导通。这样,任意时刻共阳极组和共阴极组中总是各有1个管子处于导通状态,负载电压为某个线电压。 图1中各个管子均在自然换相点处换相,从输入电压与负载线电压的对照来看,自然换相点既是各线电压的交点,又是各相电压的交点。从线电压波形可以看到由于共阴极组中处于通态的晶闸管对应的是最大相电压,而共阳极组中对应的是最小的相电压。 在MATLAB仿真中,可以通过改变共阴极组晶闸管的控制角,获取0-2.34u(变压器二次侧电压)的直流电压。具体电路图如图1所示。 三相桥式可控整流电路的MATLAB仿真可以帮助我们更好地理解和分析三相桥式可控整流电路的工作原理和特性,并且可以应用于实际工程中。
数据集齐全(60k+数据) 所用方法多,不论老师要求什么,总有符合用得上(分类,逻辑回归,时间序列) 代码+数据集+报告一条龙服务。 内容说明: 数据预处理,数据清洗,对数据进行描述性分析,统计分析,相关性分析,用ggplot2画图。并分别用逻辑回归和决策树分类建立模型。和用时间序列预测数据。 难度不低于课程实践
2024-07-02 10:43:28 17.94MB r语言 逻辑回归 数据挖掘
内容包括2015至2023年的国内汽车销售数据,包含3张表,涉及年份、月份、车型、售价、厂商、销量、同比增长情况等字段,可以用于数据分析练习使用,可用于数据清洗、相关性分析、回归分析等Python练习
2024-07-01 12:18:54 2.55MB 数据分析 python 数据集
1
json-utils 提供JSON相关的各类工具方法,比如schema转json、json转schema、json元数据分析等 json: JSON(JavaScript Object Notation, JS对象简谱) 是一种轻量级的数据交换格式。 schema: 一般用来描述JSON的数据格式,常用于json数据格式的校验。() json工具集合 / json工具方法清单 7个通用的json工具方法 getJsonDataByKeyRoute(): 根据key值路径获取对应的json数值对象(比如用于获取json数据中'data-user-name'对应的数据) getSchemaByIndexRoute(): 根据index索引路径获取对应的schema数据对象(比如通过'2-1'获取schema中第3个子对象中的第2个字段对应的数据) indexRoute2keyRoute():
2024-06-30 17:39:13 96KB JavaScript
1
资源中包含了诸多关于商品零售信息的资源,可作为数据分析与可视化的数据
2024-06-28 09:40:10 6.55MB 数据集 python 数据分析 数据可视化
1
Pandas+python可视化技术对医疗数据进行数据与处理、数据分析、数据可视化
2024-06-22 17:58:40 82.96MB
1
pandas Python数据分析与可视化大作业 + 源代码 + 数据 + 详细文档 所使用第三方库介绍:numpy 、pandas、matplotlib、seaborn、wordcloud、sklearn
2024-06-22 17:54:21 7.77MB python 数据分析 可视化 pandas
1
springboot+echarts做大数据展示 scrapy数据采集 spark数据分析处理 包含java项目,数据采集项目,spark处理代码,数据库文件,数据源文件,项目演示截图等等
2024-06-21 20:25:20 71.21MB 数据采集
1
数据分析 数据预处理 电影总票房 年份分析 时间序列分析 rating metascore 折线图 Python爬虫 beautiful soup jupyter notebook numpy pandas matplotlib 数据分析 数据挖掘
2024-06-21 20:22:53 6.08MB 数据分析 python 可视化 爬虫
1
很不幸的是,由于疫情的关系,原本线下的AWD改成线上CTF了。这就很难受了,毕竟AWD还是要比CTF难一些的,与人斗现在变成了与主办方斗。 虽然无奈归无奈,但是现在还是得打起精神去面对下一场比赛。这个开始也是线下的,决赛地点在南京,后来是由于疫情的关系也成了线上。 当然,比赛内容还是一如既往的得现学,内容是关于大数据的。 由于我们学校之前并没有开设过相关培训,所以也只能自己琢磨了。 好了,废话先不多说了,正文开始。 一.比赛介绍 大数据总体来说分为三个过程。 第一个过程是搭建hadoop环境。 这个开始我也挺懵的,不过后来看了个教程大概懂了。总的来说,hadoop就是一个集成环境,这个环境里
2024-06-21 00:01:17 917KB python 数据分析
1