inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 可用于keras,tensorflow.keras,特征提取与迁移学习
2019-12-21 21:36:05 77.23MB tf keras
1
vgg16_weights_tf_dim_ordering_tf_kernels_notop,Keras VGG16
2019-12-21 21:24:04 52.2MB vgg16 keras
1
kares VGG19神经网络参数vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
2019-12-21 21:19:10 76.42MB AI
1
resnet50_weights_tf_dim_ordering_tf_kernels_notop Linux下是放在“~/.keras/models/”中 Win下则放在Python的“settings/.keras/models/”中 Windows-weights路径:C:\Users\你的用户名\.keras\models anaconda下依然好用
2019-12-21 21:17:26 83.48MB Keras resnet50 预训练 模型
1
vgg官方模型,适用于机器学习初学者使用。
2019-12-21 20:56:33 116B 深度学习 vgg模型
1
Supervised Hashing with Kernels 简单的介绍了KSH(基于核函数的监督哈希) 主要分以下几部分内容 1.Kernel-Based Supervised Hashing 2.Hash Functions with Kernels 3.Supervised Infromation 4.Code Inner Products 5.Greedy Optimization 6.Spectral Relaxation 7.Sigmoid Smoothing
2019-12-21 20:08:34 2.11MB KSH
1
Learning with Kernels - Support Vector Machines
2019-12-21 19:38:51 39.14MB Learning Support Vector Machines
1
keras下基于tensorflow的VGG16模型notop权重系数h5文件
2019-12-13 19:30:57 56.16MB VGG16权重
1