Preface
Deep learning is a fascinating field. Artificial neural networks have been around for a long time, but something special has happened in recent years. The mixture of new faster hardware, new techniques and highly optimized open source libraries allow very large networks to be created with frightening ease.
This new wave of much larger and much deeper neural networks are also impressively skillful on a range of problems. I have watched over recent years as they tackle and handily become state-of-the-art across a range of difficult problem domains. Not least object recognition, speech recognition, sentiment classification, translation and more.
When a technique comes a long that does so well on such a broad set of problems, you have to pay attention. The problem is where do you start with deep learning? I created this book because I thought that there was no gentle way for Python machine learning practitioners to quickly get started developing deep learning models.
In developing the lessons in this book, I chose the best of breed Python deep learning library called Keras that abstracted away all of the complexity, ruthlessly leaving you an API containing only what you need to know to efficiently develop and evaluate neural network models.
This is the guide that I wish I had when I started apply deep learning to machine learning problems. I hope that you find it useful on your own projects and have as much fun applying deep learning as I did in creating this book for you.
1