3D imaging technologies -- multidimensional signal processing and deep learning methods, algorithms and applications. Volume ii
2022-06-25 09:10:13 9.7MB 3Dimaging deeplearning
1
图像标注工具Labelme-linux免安装版
2022-06-21 12:05:40 82.84MB Deeplearning Linux Detection
1
Deeplearning吴恩达深度学习笔记
2022-05-22 09:09:31 21.71MB 深度学习 人工智能
1
包括两本书,书名都是Deep Learning with Python,一本作者:Nikhil Ketkar,2017版,带目录,另一本作者是一直在维护Keras的谷歌工程师:Francois Chollet
2022-05-16 20:13:57 18.53MB DeepLearning Python
1
TFDeepSurv 通过张量流实现Deep Cox比例风险模型和生存分析。 建议的TensorFlow版本为1.15.3。 并且模块测试在TensorFlow-1.15.3下通过了。 注意: 已发布。 旧版本位于分支archive_v1 。 与v1.0版本相比,当前版本有了很大的改进: 建立计算图的速度 利用原始的tensorflow操作来计算损失函数(用于处理关系) 生存数据的统一格式 代码优雅而简单 如果您有任何问题,请先阅读以下常见问题解答,或直接发送电子邮件给我。 1.与DeepSurv的区别 是Deep Cox比例风险模型的软件包,在Github上开源。 但是我们的作品可能会发光: 在您的生存数据中支持死亡时间的联系,这意味着不同的损失函数和生存函数的估计量( Breslow近似)。 提供生存函数估计。 使用科学方法-贝叶斯超参数优化来调整DNN的超参数。 通
1
DeepLearning.ai 吴恩达深度学习课程笔记PDF
2022-05-05 12:05:54 35.03MB 深度学习 python
1
利用Alexnet生成DeepDream图片 深度学习matlab例程/Alexnet生成DeepDream图片/matlab代码
2022-05-03 22:21:30 753B Alexnet DeepDream matlab deeplearning
1
迈向稳健的单眼深度估计:用于零镜头跨数据集传输的混合数据集 该存储库包含用于从单个图像计算深度的代码。 它伴随我们的: 迈向稳健的单眼深度估计:用于零镜头跨数据集传输的混合数据集RenéRanftl,Katrin Lasinger,David Hafner,Konrad Schindler,Vladlen Koltun MiDaS v2.1在10个数据集(ReDWeb,DIML,电影,MegaDepth,WSVD,TartanAir,HRWSI,ApolloScape,BlendedMVS,IRS)上进行了多目标优化训练。 在5个数据集(本文中的MIX 5 )上训练过的原始模型可以在找到。 变更日志 [2020年11月]发布了MiDaS v2.1: 经过10个数据集训练的新模型,其度平均比高出 新的轻量级模型可在移动平台上实现。 适用于和示例应用程序 ,可在机器人上轻松部署 [2
1
【深度学习】CNN卷积神经网络-识别阿喵阿汪源代码
1
瓦迪亚 用于创建端到端Web应用程序的开源解决方案,以在各种临床场景中利用深度学习的力量,例如植入物检测,肺炎检测,脑部mri分割等。 公关建议: 除非项目维护人员另有要求,否则请提供测试分支的PR 适当地命名您的公关 确保您已经为此PR提出了一个问题,并且项目维护者已经批准并分配了您 在PR说明中,通常期望以下内容: 使用的数据集: 数据集大小: 数据集来源: 链接到Colab Notebook:请确保您授予具有链接的任何人查看权限 探索性数据分析[相关快照和您的推断] 使用的任何预处理方法。 [详细说明] 您的训练框架 用于训练的不同方法 测试/训练拆分 结果:请不要简单地陈述测试的准确性。 预计还会有其他性能指标,例如F1得分等 **绘制表格以显示对您使用的不同方法的性能的比较分析 结论:您认为哪种方法最好,为什么? notebooks/目录中应包含用于训练的笔记本
2022-04-13 08:42:42 58KB python tensorflow medical-imaging deeplearning
1