【项目资源】:图像处理。包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源等各种技术项目的源码。包括C++、Java、python、web、C#、EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-10-09 22:24:33 19.23MB 图像处理
1
基于FPGA的车牌识别,其中包括常规FPGA图像处理算法: rgb转yuv, sobel边缘检测, 腐蚀膨胀, 特征值提取与卷积模板匹配。 有bit流可以直接烧录实验。 保证无错误,完好,2018.3vivado版本,正点达芬奇Pro100t,板卡也可以自己更改移植一下。 所以建的IP都有截图记录下来。
2024-10-09 22:12:09 1.16MB 图像处理 fpga开发
1
用于检测机载RGB,高光谱和LIDAR点云中单个树的多传感器基准数据集 树木的个体检测是林业和生态学的中心任务。 很少有论文分析在广泛的地理区域内提出的方法。 NeonTreeEvaluation数据集是在国家生态观测网络(NEON)中22个站点的RGB图像上绘制的一组边界框。 每个站点覆盖不同的森林类型(例如 )。 该数据集是第一个在多种生态系统中具有一致注解的数据集,用于共同注册的RGB,LiDAR和高光谱图像。 评估图像包含在此仓库中的/ evaluation文件夹下。 注释文件(.xml)包含在此仓库中的/ annotations /下 制作人:Ben Weinstein-佛罗里达大学。 如何根据基准进行评估? 我们构建了一个R包,以方便评估并与基准评估数据进行交互。 图像是如何注释的? 每个可见的树都进行了注释,以创建一个包围垂直对象所有部分的边界框。 倒下的树木没有注释。
2024-10-09 21:49:48 2GB Python
1
人脸检测技术是计算机视觉领域中的一个关键组成部分,它在安全监控、人脸识别、智能门禁、社交媒体分析等场景中有着广泛的应用。本项目专注于利用YOLOv8这一深度学习框架实现高效且精确的人脸检测算法。YOLO(You Only Look Once)系列算法以其实时性能和高精度著称,而YOLOv8作为最新版本,继承了前代的优点并进行了优化,旨在提高检测速度和准确率。 人脸检测的核心是识别图像中的人脸区域,这通常通过训练深度神经网络来完成。YOLOv8使用了一种称为单阶段目标检测的方法,它不同于两阶段方法(如Faster R-CNN),不需要先生成候选框再进行分类。YOLO模型直接预测边界框和类别概率,简化了流程,提高了检测速度。 YOLOv8在架构上可能包括改进的卷积层、残差连接和批归一化等,这些设计有助于特征提取和梯度传播,从而提高模型的训练效率和泛化能力。此外,它可能采用了更小的锚框(anchor boxes),这些预定义的边界框大小和比例与可能出现的目标相对应,以适应不同大小和方向的人脸。 本项目提供了完整的源代码,这对于理解YOLOv8的工作原理和实现细节至关重要。源码中包含了模型训练、验证、测试以及推理的步骤,开发者可以借此深入学习深度学习模型的构建、训练和优化过程。此外,实战项目通常会涵盖数据预处理、标注工具、训练脚本、评估指标等内容,有助于提升实际操作技能。 为了实现高效的人脸检测,YOLOv8可能会利用GPU加速计算,并采用数据增强策略来增加模型对各种环境变化的鲁棒性。数据增强可能包括随机翻转、旋转、缩放等,以模拟真实世界中的光照、角度和姿态变化。 在实际应用中,人脸检测算法需要在保持高速的同时确保精度。YOLOv8通过优化网络结构和训练策略,力求在这两个方面取得平衡。例如,模型可能会使用轻量级设计,减少参数数量,同时采用权值初始化和优化器策略来加快收敛速度。 本项目提供了一个基于YOLOv8的人脸检测算法实现,不仅展示了深度学习在目标检测领域的强大能力,也为开发者提供了一个优质的实战平台。通过学习和实践,你可以深入了解YOLOv8的工作机制,提升在人脸检测领域的专业技能。
2024-10-09 11:17:25 16.82MB 人脸检测 人脸检测算法
1
基于可调谐半导体激光吸收光谱(TDLAS)技术的气体检测系统,因气体吸收产生的二次谐 波信号携带浓度信息,通过浓度反演可实现浓度信息的提取。本文简要介绍了TDLAS气体检测系 统,对Matlab下完成的曲线拟合和反演算法仿真以及FPGA内部设计实现的反演算法进行了详细 描述,并在一氧化碳检测系统下利用多组待测浓度完成了反演算法的验证。 可调谐半导体激光吸收光谱(TDLAS)是一种先进的气体检测技术,它利用特定波长的激光穿透气体样本,当激光与气体分子相互作用时,会发生吸收现象,特别是气体分子对激光的吸收强度与气体的浓度有直接关系。TDLAS技术能够精确地测量气体的浓度,尤其适用于监测大气、工业生产过程中的有害或有价值气体,如一氧化碳等。 在TDLAS气体检测系统中,核心步骤是浓度反演,即从测量到的吸收信号(通常表现为二次谐波信号)中提取出气体的浓度信息。这一过程通常涉及到复杂的数学模型和算法。在MATLAB环境下,可以进行曲线拟合和反演算法的仿真。MATLAB作为强大的数学计算和仿真工具,提供了丰富的函数库和优化算法,能有效处理非线性拟合问题,构建吸收光谱与气体浓度之间的关系模型。 具体来说,首先需要对测量得到的吸收光谱数据进行预处理,包括噪声过滤、基线校正等,然后利用MATLAB的曲线拟合工具,如非线性最小二乘法,找到最佳拟合曲线。接着,通过反演算法,如Levenberg-Marquardt法或直接搜索法,反推出气体浓度。在反演过程中,可能需要迭代求解,以确保浓度估计的准确性。 文章中提到了FPGA(Field-Programmable Gate Array)内部设计实现的反演算法。FPGA是一种可编程的硬件平台,它能快速并行执行计算任务,特别适合实时和高效率的系统。将反演算法部署到FPGA上,可以大大提高系统的响应速度和检测效率,同时减小对外部处理器的依赖。 实验部分,研究者在一氧化碳检测系统中,利用多组不同浓度的一氧化碳样本对反演算法进行了验证。结果显示,浓度反演的吻合度达到了99.9%,这表明反演算法非常准确,能满足实际应用的需求。这种基于MATLAB的前期数据分析和误差控制方法不仅适用于TDLAS系统,还可以推广到其他领域的设备研制和系统综合测试。 总结而言,TDLAS气体检测技术结合MATLAB和FPGA的优势,实现了高效、精确的气体浓度测量。MATLAB提供了便捷的数据处理和算法仿真环境,而FPGA则确保了实时的反演计算能力。这种技术对于环境保护、安全生产、科学研究等领域具有重要的实用价值。
2024-10-08 20:08:03 1.62MB matlab TDLAS 气体检测
1
通用Yolov8检测GUI,直接替换权重即可!免费!免费!免费!
2024-10-06 00:32:21 4KB 目标检测
1
血细胞检测数据集是计算机视觉领域的一个重要应用,主要用于自动识别和分析医学图像中的血细胞。这个特定的数据集,标记为“血细胞检测数据集yolo格式”,是为使用YOLO(You Only Look Once)算法进行血细胞检测而设计的。YOLO是一种实时目标检测系统,因其高效和准确的性能在图像识别任务中备受青睐。 我们要理解YOLO算法的工作原理。YOLO将图像划分为多个网格,并预测每个网格内是否存在目标以及目标的类别和位置。这种单次扫描的机制使得YOLO在处理速度和准确性之间找到了良好的平衡。对于血细胞检测,YOLO可以快速准确地定位和分类图像中的每一个血细胞,极大地提升了医疗图像分析的效率。 数据集包含了364张图像,分别属于三类血细胞:白细胞(WBC)、红细胞(RBC)和血小板。这三类细胞在形态和功能上有着显著的区别,因此它们的识别对于疾病的诊断至关重要。白细胞是免疫系统的一部分,对抗感染;红细胞负责氧气运输;血小板则参与止血过程。通过训练YOLO模型来识别这些细胞,可以辅助医生进行血液疾病筛查,如贫血、白血病或出血性疾病等。 为了训练YOLO模型,我们需要对每张图像进行标注,指定每个血细胞的类别和边界框。在"血细胞检测数据集yolo格式"中,这些标注可能已经完成,以YOLO特有的XML或者TXT格式存储,包含每个目标的坐标和类别信息。这些标注文件是模型训练的关键,确保模型能学习到细胞的特征并正确区分不同的细胞类型。 训练过程中,数据通常会被划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数,而测试集则用来评估模型的泛化能力,即在未见过的数据上的表现。数据增强技术,如翻转、缩放、裁剪和色彩变化,常被用来扩大数据集的多样性,提高模型的鲁棒性。 一旦模型训练完成,我们可以用它来进行实时的血细胞检测。输入一张血细胞图像,模型会输出每个细胞的类别和位置信息,这些信息可以进一步用于医学诊断或研究。然而,值得注意的是,尽管机器学习模型能提供辅助,但最终的医疗决策仍然需要由专业医生根据临床经验和专业知识做出。 总结来说,"血细胞检测数据集yolo格式"提供了一个用于训练和测试YOLO模型的资源,目的是实现高效准确的血细胞自动识别。这个数据集包含丰富的血细胞图像,覆盖了三种主要类型,通过模型训练和应用,有望推动医学图像分析技术的发展,提升医疗服务质量。
2024-10-04 23:42:30 11.92MB 数据集
1
6自由度机器人自干涉检测完整代码
2024-10-03 16:38:10 5KB 机器人 matlab 模型仿真
1
halcon 深度学习 对象检测 图像+代码
2024-09-27 22:32:16 103.8MB 深度学习
1
### 三相电源相序检测保护电路图解析 #### 一、引言 三相电源在工业生产和民用电力系统中有着广泛的应用。由于三相电源的特殊性,其相序对于电机等负载的正常工作至关重要。错误的相序不仅会导致电机反转,还可能对设备造成损害,甚至引发安全事故。因此,设计一种能够自动检测并保护相序的电路显得尤为重要。本文将详细介绍一种基于CD4013双D触发器的三相电源相序检测保护电路的工作原理及实现方式。 #### 二、电路组成与工作原理 ##### 1. 电路结构 该电路的核心部件是一片CD4013双D触发器,它是一种常用的数字集成电路,具有两个独立的D触发器单元。每个D触发器都包含一个时钟输入(CLK)、数据输入(D)、输出(Q)以及复位输入(R)。在这个特定的应用场景中,电路还包括了必要的外围元件,如电阻、稳压二极管、微分电路等,用以处理和转换输入信号。 ##### 2. 工作流程 - **输入信号处理**:三相交流电源(A、B、C)首先通过变压器降压至安全电压等级,然后经过整流电路转换成低压脉冲信号。其中,A和B相脉冲信号分别连接至两个D触发器的时钟输入端,而C相脉冲信号则经过微分电路转换为尖脉冲信号,用于触发触发器的复位端(R)。 - **相序检测逻辑**: - 当相序正确时(即A→B→C),A相脉冲的上升沿首先使第一个D触发器(Q1)输出高电平,随后B相脉冲的上升沿使得第二个D触发器(Q2)输出高电平。 - C相脉冲在上升沿产生的尖脉冲将两个触发器复位,Q1和Q2回到低电平状态,完成一个完整的循环过程。 - 若相序错误,则Q2的输出将保持低电平不变,导致后续的控制电路无法动作。 - **输出控制**: - 在正确的相序情况下,Q2的输出高电平使得后级三极管导通,进而使继电器动作,从而接通三相电源到负载。 - 相反,如果相序错误,Q2输出低电平,三极管截止,继电器不会动作,从而切断三相电源的供电,保护负载不受损坏。 #### 三、关键元件解析 1. **CD4013双D触发器**:该芯片提供两个独立的D触发器功能,每个触发器都包含时钟输入、数据输入、输出和复位输入端。在本电路中,触发器被用来检测相序并根据结果输出相应的控制信号。 2. **变压器与整流电路**:用于将高压三相交流电降压并转换为低压脉冲信号,便于电路处理。 3. **微分电路**:通常由电阻和电容组成,用于将输入的阶跃信号转换为尖脉冲信号,以便更有效地触发D触发器的复位端。 4. **稳压二极管**:用于限制输入信号的幅度,确保触发器能够稳定可靠地工作。 5. **继电器**:根据电路的输出控制三相电源的接通或断开,起到开关作用。 #### 四、应用场景与意义 - **应用场景**:该电路可以广泛应用于各种需要三相电源供电的场合,例如工业生产中的电动机控制系统、建筑物内的空调系统以及其他需要保证相序正确的电气设备。 - **实际意义**:通过自动检测并保护相序,可以有效避免因相序错误而导致的设备故障或安全事故,提高系统的可靠性和安全性。 #### 五、结论 通过对上述三相电源相序检测保护电路的分析可以看出,利用简单的数字逻辑器件如CD4013双D触发器结合适当的外围电路设计,可以实现高效且可靠的相序检测与保护功能。这种电路不仅结构简单、成本低廉,而且具有很高的实用价值,在工业自动化领域有着广泛的应用前景。
2024-09-25 19:50:42 59KB 技术应用
1