强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
2024-10-17 18:42:47 13KB 强化学习
1
DQN算法实现机器学习避开障碍走到迷宫终点。.zip
2024-10-16 13:42:12 256KB
1
在本文中,我们将深入探讨如何使用深度Q网络(DQN)算法进行移动机器人的三维路径规划,并通过MATLAB实现这一过程。DQN是强化学习领域的一种强大算法,它结合了深度学习模型的能力来处理复杂的环境状态空间,为智能体如移动机器人提供了高效的学习策略。 一、深度Q网络(DQN)算法 DQN算法是由DeepMind在2015年提出,它解决了传统Q学习算法中Q值估计不稳定的问题。DQN引入了经验回放缓冲区、目标网络和固定Q值更新等关键机制,使得深度神经网络在连续的环境交互中能够更稳定地学习。 1. 经验回放缓冲区:DQN存储过去的经验,以随机采样方式更新网络,减少了连续状态之间的相关性,增加了样本的多样性。 2. 目标网络:DQN使用两个网络,一个用于选择动作(主网络),另一个用于计算目标Q值(目标网络)。定期将主网络的参数复制到目标网络,以减少短期波动。 3. 固定Q值更新:为了避免网络在训练过程中过度估计Q值,DQN在计算目标Q值时使用的是旧的Q网络,而不是当前正在更新的Q网络。 二、移动机器人三维路径规划 在三维环境中,移动机器人的路径规划需要考虑更多的因素,如障碍物、空间限制和动态环境。DQN算法可以有效地解决这些问题,因为它能够处理高维度的状态空间,并通过学习找到最优策略。 1. 状态表示:在MATLAB中,可以将机器人的位置、方向、速度以及环境的三维地图作为状态输入到DQN模型。 2. 动作空间:定义机器人的移动动作,如前进、后退、左转、右转和上升/下降等。 3. 奖励函数:设计合适的奖励函数,以鼓励机器人避开障碍物,到达目标点,同时避免不必要的动作。 三、MATLAB实现 MATLAB提供了丰富的工具箱支持深度学习和强化学习,包括Deep Learning Toolbox和Reinforcement Learning Toolbox。在MATLAB中实现DQN路径规划步骤如下: 1. 定义环境:创建一个模拟三维环境,包括机器人的状态、动作和奖励函数。 2. 构建DQN模型:使用Deep Learning Toolbox构建包含多个隐藏层的神经网络,用于近似Q值函数。 3. 训练过程:设置训练参数,如学习率、批大小、经验回放缓冲区大小等,然后让机器人在环境中与环境交互,通过DQN模型更新策略。 4. 监控与调试:在训练过程中,观察机器人的性能和Q网络的收敛情况,调整参数以优化性能。 5. 测试与评估:训练完成后,用未见过的环境测试机器人的路径规划能力,分析其效果。 总结,DQN算法为移动机器人的三维路径规划提供了一种有效的解决方案,通过MATLAB的工具箱,我们可以方便地实现并调试这个算法。在实际应用中,可能还需要结合其他技术,如蒙特卡洛方法、搜索算法等,以进一步提升路径规划的效率和鲁棒性。
2024-10-16 13:18:07 3KB matlab
1
《图论与网络最优化算法》是计算机科学与工程领域中的一门重要课程,主要研究如何在图结构中寻找最优解。龚劬教授的这本教材深入浅出地讲解了图论的基本概念、网络最优化算法及其应用。课后习题和参考答案是学习过程中的重要辅助资料,能够帮助学生巩固理论知识,提升实践能力。 我们要理解什么是图论。图论是数学的一个分支,研究点(顶点)和点之间的连接(边)组成的结构——图。在计算机科学中,图常被用来建模各种复杂问题,如网络连接、交通路线、社交关系等。图的性质包括连通性、树形结构、环、路径、欧拉路径、哈密顿回路等。 网络最优化算法则是图论在实际问题中的应用,比如最小生成树问题(Prim或Kruskal算法)、最短路径问题(Dijkstra或Floyd-Warshall算法)、最大流问题(Ford-Fulkerson或Edmonds-Karp算法)。这些算法的目标是在满足特定约束条件下找到最优解,如最小化成本、最大化流量等。 课后的习题涵盖了图论的基础概念和网络最优化算法的各个方面。例如,可能会要求学生构造特定类型的图,分析其性质,或者设计算法解决实际问题。参考答案提供了正确的解题思路和步骤,有助于学生检查自己的理解和解题技巧。 在"平时作业答案"这个文件中,可能会包含对这些问题的详细解答,包括图的表示方法(邻接矩阵、邻接表等),解题过程中的逻辑推理,以及算法的具体实现。通过对比参考答案,学生可以发现自己的不足,进一步提高解决问题的能力。 学习《图论与网络最优化算法》不仅可以提升理论素养,还能培养解决实际问题的能力。在教育和考试场景中,这部分知识是许多计算机专业考试和竞赛的重要部分,如ACM/ICPC编程竞赛、研究生入学考试等。掌握好这些内容,对于从事计算机网络、数据结构、算法设计等相关工作大有裨益。 《图论与网络最优化算法》不仅是一门理论课程,更是一门实践性强、应用广泛的学科。通过深入学习和练习,学生能够掌握解决复杂问题的工具,为未来的职业生涯打下坚实基础。
2024-10-14 12:28:23 172.4MB 网络 网络
1
遗传算法原理及应用---国防工业出版社 周明,孙树栋
2024-10-14 10:51:38 3.51MB 遗传算法原理及应用
1
Unity杀戮尖塔地图算法实现 项目引擎:Unity 语言:C# 主要实现逻辑 一. 地图房间生成规则 ①房间数量规则 起点层:房间数量动态配置 中间层:房间数量 :{最小值:2 ,最大值起点数量*2-1} boss 层:房间数量=1 ②房间位置 X: 房间在该层平铺后+随机横向偏移 Y:当前层数 * 每层高度+随机纵向偏移 二. 路线生成规则 ①获取当前房间最近的上层房间,将该房间存入当前房间上层对象列表中 ②断路检索:如果下层房间没有任何对象将当前层设置到上层对象列表中,下层距离此层距离最近的对象将此层添加上层对象列表 ③链接当前层和上层对象列表中的对象
2024-10-14 09:57:15 10.3MB unity
1
提出了在多物资、多车型特征的应急物资分层调度情况下求解调度系统中各运输工具具体调度方案的算法。该算法以系统调度任务完成时间最小为目标,基于遗传算法采用整体联动的求解思想。实际应用中的调度问题往往具有层次性,针对物资分层联动调度问题,给出了物资两层调度的算例,并建立了相应的数学模型。算例中第一层调度系统由一级仓库、二级仓库、一级运输工具和一级路网构成;第二层调度系统由灾害点、二级仓库、二级运输工具和二级路网构成。将两层调度系统视做整体,采用基于遗传算法的整体联动求解方法对算例进行求解得出结果,并对结果进行分析论证,验证算法的可行性与有效性。
2024-10-13 23:49:56 1.63MB
1
在IT领域,动态规划是一种强大的算法工具,常用于解决复杂的问题,如最优化问题。本主题聚焦于"01背包问题",这是一个经典的计算机科学优化问题,与动态规划紧密相关。01背包问题通常出现在资源有限的情况下,我们需要选择最优的物品组合以最大化价值或满足特定目标。 动态规划是一种解决问题的方法,它将复杂问题分解为较小的子问题,并存储子问题的解决方案以避免重复计算。在01背包问题中,我们有一个容量为W的背包和n个物品,每个物品有重量wi和价值vi。目标是选取不超过背包容量的物品,使得总价值最大。 我们定义一个二维数组dp[i][j],其中i表示考虑前i个物品,j表示背包剩余容量。dp[i][j]表示在考虑前i个物品且背包容量为j时能够获得的最大价值。 动态规划的转移方程是关键所在。对于第i个物品,有两种情况: 1. 如果不选第i个物品(即跳过),那么dp[i][j]等于dp[i-1][j],因为我们没有使用第i个物品的任何部分。 2. 如果选择第i个物品,我们必须检查是否背包容量足够装下它。如果j>=wi,我们可以尝试放入这个物品。在这种情况下,dp[i][j]等于dp[i-1][j-wi]加上第i个物品的价值vi,因为我们使用了第i个物品并且背包容量减少了wi。 最终,dp[n][W]就是我们寻找的最优解,即在背包容量W限制下,能获得的最大价值。 在实际应用中,01背包问题可以扩展到多个限制条件,例如物品可能有类别限制、数量限制等。解决这些问题通常需要对基础动态规划方案进行适当的修改和扩展。 在"01 背包问题限定条件最优解动态规划算法.docx"文档中,可能会详细介绍如何处理这些额外的条件,包括如何构造状态和调整转移方程,以及如何通过剪枝技术减少计算量,提高算法效率。这可能是通过引入额外的维度来记录这些条件,或者通过设计更复杂的决策过程来处理约束。 01背包问题及其动态规划解法是理解和掌握动态规划算法的重要案例,它们在实际问题中有着广泛的应用,如资源分配、任务调度、投资组合优化等。深入理解并熟练应用动态规划,对于提升编程能力和解决实际问题能力至关重要。
2024-10-13 13:29:03 10KB 动态规划
1
采用栅格法建模,从文件中读取bmp格式图片先将其灰度化,然后将其转化成一个n*n的环境区域,即将图片划分成n*n个像素块。在全局路径规划中,机器人从起点开始到节点再从节点到目标点的代价值用遍历的栅格总和来表示,也就是机器人每覆盖一个栅格,成本代价就是从起点到节点的覆盖栅格数的累加,估计代价就是从当前节点到目标点的栅格数累加。机器人在覆盖栅格的时候首先要判断目标栅格是否是自由栅格,然后判断这个自由栅格是否是关联性最大的栅格,与相关栅格比较如果关联值最大即作为覆盖栅格。如果关联属性值大小一样,在机器人的八连通方向上按照顺时针栅格。
2024-10-13 09:22:17 16.22MB Matalb A*算法 路径规划
1
蚁群算法(Ant Colony Optimization, ACO)是一种模拟生物行为的优化算法,源自自然界中蚂蚁寻找最短路径的行为。在MATLAB中实现蚁群算法,主要用于解决如旅行商问题(Traveling Salesman Problem, TSP)等组合优化问题。下面我们将深入探讨蚁群算法的基本原理、MATLAB实现的关键步骤以及可能遇到的问题。 1. **蚁群算法基本原理** - 蚂蚁系统:由多只蚂蚁在图中搜索路径,每只蚂蚁根据信息素浓度和距离选择下一个节点。 - 信息素更新:蚂蚁走过路径后留下信息素,信息素会随着时间蒸发,同时好的路径(短路径)积累的信息素更多。 - 概率转移规则:蚂蚁在节点间转移的概率与当前节点到目标节点的信息素浓度和距离的启发式因子有关。 - 全局更新:周期性地全局更新所有路径的信息素浓度,以防止局部最优。 2. **MATLAB实现关键步骤** - **初始化**:定义蚂蚁数量、城市(节点)数量、迭代次数、信息素蒸发率、启发式因子等参数。 - **构建图**:建立城市间的邻接矩阵,表示各城市之间的距离。 - **路径选择**:每只蚂蚁依据当前信息素浓度和启发式因子选择下一个节点,形成路径。 - **信息素更新**:根据蚂蚁走过的路径和信息素更新策略更新所有边的信息素浓度。 - **全局更新**:执行一定次数的迭代,每次迭代后全局更新信息素。 - **结果分析**:记录每轮迭代的最优解,最后得到全局最优路径。 3. **MATLAB代码结构** - 主函数:调用子函数,设置参数,进行循环迭代。 - 子函数包括:初始化函数、路径选择函数、信息素更新函数、距离计算函数等。 - 数据结构:可能使用矩阵、结构体或细胞数组来存储城市信息、路径和信息素浓度。 4. **可能遇到的问题及解决策略** - 局部最优:蚁群算法易陷入局部最优,可通过调整参数、引入扰动机制或使用多种信息素更新策略来改善。 - 计算效率:大规模问题可能导致计算量大,可采用并行计算优化。 - 参数选取:信息素蒸发率、启发式因子等参数的选择对算法性能有很大影响,需通过实验调整。 5. **antPlan-master文件夹内容** - 可能包含MATLAB源代码文件,如`.m`文件,用于实现蚁群算法的各种函数和主程序。 - 数据文件,可能包含城市位置、距离矩阵等初始输入数据。 - 结果文件,可能保存了每次迭代的最优路径和最终结果。 - README文件,介绍项目背景、使用方法和注意事项。 了解以上内容后,你可以通过解析`antPlan-master`中的文件,逐步理解并运行MATLAB实现的蚁群算法,进行路径规划。在实际应用中,还可以根据具体需求调整算法,例如优化算法效率、适应不同的优化问题等。
2024-10-13 08:10:07 942KB matlab
1