高光谱图像分类问题是高光谱遥感图像处理问题中的研究基础,它的主要目的是根据高光谱遥感图像中的光谱信息和空间信息将图像中的每个像元划分为不同的地物类别[1]。高光谱图像分类技术被广泛应用于环境监测、矿产勘探、军事目标识别等领域,然而高光谱图像的高维特性、波段间的高度相关性、光谱混合等使得高光谱图像分类面临着巨大的挑战。因此,高光谱图像分类问题越来越受到学者们的广泛关注[2-4]。
2022-04-07 21:27:40 11.87MB 遥感 高光谱图 分类 空谱联合
1
The Salinas数据集,是常用的高光谱数据集之一,为.mat文件,方便进行高光谱图像分类的研究。
2022-04-05 00:20:28 25.3MB 高光谱图像
1
结合低秩矩阵分解的带状噪声模型用于高光谱图像去噪
2022-04-02 11:16:57 1MB 研究论文
1
高光谱图像分离matlab代码使用微扰线性混合模型进行具有光谱可变性的高光谱解混 描述:与描述的方法相关的 Matlab 代码 P.-A. Thouvenin, N. Dobigeon 和 J.-Y. Tourneret -使用扰动线性混合模型IEEE Trans对光谱可变性进行高光谱解混。 信号处理,卷。 64,没有。 2,第 525-538 页,2016 年 1 月。 作者: P.-A. Thouvenin, pierreantoine[dot]thouvenin[at]gmail[dot]com 实验:要在文章中报告的真实数据上运行具有代表性的实验示例,请配置并运行main.m脚本。 依赖关系:当前代码包括以下出版物中描述的 MATLAB 函数,并由其作者开发。 [1] JM Nascimento 和 JM Bioucas-Dias -顶点分量分析:一种分离高光谱数据的快速算法, IEEE Trans。 地球科学。 遥感,卷。 43,没有。 4,第 898--910 页,2005 年 4 月。 [2] JM Bioucas-Dias 和 MAT Figueiredo -约束稀疏回
2022-03-31 22:59:10 2.3MB 系统开源
1
几种用于可视化的高光谱图像融合方法的比较
2022-03-29 22:31:43 1.37MB 研究论文
1
为了解决基于深度学习的高光谱图像分类方法对于小样本数据分类精度低的问题,提出了一种基于多尺度残差网络的分类模型。该模型通过在残差模块中加入分支结构,分别构造了基于光谱特征和空间特征的提取模块,实现了空间特征和光谱特征的多尺度提取融合,充分利用了高光谱图像中丰富的空谱信息。此外,所提模型使用了动态学习率、批归一化以及Dropout等来提高计算效率和防止过拟合。实验结果表明,该模型在Indian Pines和Pavia University数据集上分别取得了99.07%和99.96%的总体分类精度,与支持向量机和现有的深度学习方法相比,所提模型有效地提高了针对小样本高光谱图像的分类性能。
2022-03-28 16:27:30 9.05MB 遥感 高光谱图 小样本 多尺度
1
Spectral Python(SPy)是一个python软件包,用于读取,查看,操作和分类高光谱图像(HSI)数据。 SPy包括用于聚类,降维,监督分类等功能。
2022-03-26 22:09:22 154KB 开源软件
1
高光谱图像分离matlab代码高光谱图像的光谱超分辨率 高光谱图像光谱超分辨率代码 目录 介绍 该存储库包含为高光谱数据的光谱超分辨率设计的 MATLAB 代码和脚本。 所提出的方法通过利用稀疏表示 (SR) 学习框架,从其获得的低分辨率形式合成高光谱分辨率 3D 数据立方体。 根据 SR 框架,各种低光谱分辨率和高光谱分辨率的数据立方体可以表示为来自学习过的过完备字典的元素的稀疏线性组合。 依赖关系 数据集 所提出的光谱超分辨率方案的性能使用 EO-1 NASA 的 Hyperion 卫星高光谱地球观测场景进行量化。 由于其高光谱覆盖率,Hyperion 场景已被广泛用于遥感界用于分类和光谱分离目的。 我们考虑了 2015 年 8 月 30 日获得的夏威夷岛的高光谱场景,并利用了可见光和近红外光谱范围内的 67 个光谱带,从 436.9 到 833.83 nm。 字典 关于字典训练阶段,我们设计了耦合字典,基于 ADMM 稀疏耦合字典学习方案,对高光谱分辨率和低光谱分辨率特征空间进行建模。 我们从 100.000 对训练低和高光谱分辨率数据立方体中训练了 512 个代表性字典原子。
2022-03-18 15:23:15 2.05MB 系统开源
1
用于多通道图像(例如,高光谱、MRI、卫星或任何其他类型的具有超过 1 个波段的图像数据)的图像立方体切片器的实现。 图像立方体切片器在左侧面板中包含一个图像带屏幕,其中显示了图像平面(使用 imshow() 或 imagesc())。 使用位于图像平面下方的滑块工具选择图像平面。 此外,一个可拖动的矩形区域被放置在图像的中心。 右侧面板说明了对应于当前选定矩形区域的数据立方体的每个波段的平均数据值(作为一维图)。 可以选择四个不同的矩形区域。 对于高光谱图像,右侧面板图对应于当前选择的(平均)光谱信号。 对于低 RAM 的机器,可以选择调整图像数据的大小以加快切片器的速度。 注意:如果您收到以下错误: ??? 在81使用==> im_cube_slicer时出错此 hg 对象不会触发此事件 那么您的 Matlab 版本与 im_cube_slicer 不兼容。
2022-03-09 20:36:35 6KB matlab
1