利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码。 实现功能: 基础功能利用pytorch实现图像分类 包含带有warmup的cosine学习率调整 warmup的step学习率优调整 多模型融合预测,加权与投票融合 利用flask + redis实现模型云端api部署(tag v1) c++ libtorch的模型部署 使用tta测试时增强进行预测(tag v1) 添加label smooth的pytorch实现(标签平滑)(tag v1) 添加使用cnn提取特征,并使用SVM,RF,MLP,KNN等分类器进行分类(tag v1)。 可视化特征层。 转载:https://github.com/lxztju/pytorch_classification
2023-03-11 16:54:10 3.03MB 预测模型 图像分类 pytorch
1
预测模型】灰色理论GM模型地区PM2.5预测【含Matlab源码 499期】.zip
2023-03-06 09:09:19 74KB
1
5.固定效应变系数模型(OLS法) 模型形式为 其中:ai为29个省市的自发消费倾向,bi为边际消费倾向,两者用来反映省市间的消费结构差异。 EViews估计方法:在Common coefficients(系数相同)选择窗保持空白;在Cross section specific coefficients(截面系数不同)选择窗填入YD?;在Intercept(截距项)选择窗中选Fixed effects;其余选项同上。固定影响变系数模型输出结果如表11.5.10。 表11.5.10 固定影响变系数模型估计结果
1
为解决泊位占有率的预测精度随步长增加而下降的问题,提出了一种基于注意力机制的泊位占有率预测模型。通过卷积神经网络获得多变量的时间模式信息作为模型的注意力机制。通过对模型训练、学习特征信息,并对相关性高的序列分配较大的学习权重,来实现解码器输出高度相关的有用特征预测目标序列。应用多个停车场数据集对模型进行测试,测试结果及对比分析表明,所提模型在步长达到 36 时对泊位占有率的预测数据能较好地估计真实值,预测精度和稳定性相比LSTM均有提高。
1
临床预测模型从入门到精通 ppt 课件 代码包及文献资料
2023-03-02 22:58:55 148.99MB 预测模型 临床预测模型
1
通过研究电力负荷预测中支持向量机的参数优化问题,将改进后新的粒子群算法导入支持向量机参数中,从而建立一种新的电力负荷预测模型(IPSO-SVM)。首先将支持向量机参数编码为粒子初始位置向量,然后通过对粒子个体之间信息交流、协作的分析找到支持向量机的最优参数,并针对标准粒子群算法的缺陷进行一定的改进,从而应用于电力负荷的建模与预测,最后通过仿真对比实验来测试它的性能。实验结果表明,这种新的电力负荷预测模型能够获得较高精度的电力负荷预测结果,大大减少了训练时间,能够满足电力负荷在线预测要求。
1
1. 构建了新的个人信用评估指标体系 2. 采用众数插补法对人口特征缺失数据进行插补 3. 使用聚类分析和分层抽样方法平衡样本数据 4. 使用Lasso-Log
2023-02-24 17:01:03 265KB
1
量化投资策略源码模型量化策略代码量化选股 量化择时量化资产配置财务指标选股研究系列成长股选股模型多因子选股模型事件驱动策略系列选股因子研究系列分析师荐股能力评定与跟踪利用分析师盈利预测数据挖掘投资机会度量市场“恐惧与贪婪”的量化择时指标量化择时——度量市场“恐惧与贪婪”的量化择时指标通过产业资本增减持数据构建的量化择时指标风格轮动模型行业基本面预测模型行业轮动模型
2023-02-22 22:38:07 39.03MB 量化投资 策略 预测模型 选股研究
1
Excel中的销售预测模型设计.doc
2023-02-20 10:20:08 116KB Excel中的销售预测模型设计
1
基于matlab建模,本模型是通过遗传算法优化BP神经网络进行预测,最后输出进化过程图、预测效果对比图、误差图和RMSE、MAE、MAPE、R2等评价指标。可以结合自己的数据集运行,需要修改的地方均备注了,适合新手入门,包括main.m、BpFunction.m、Objfun.m三个.m文件。 本文件代码是基于【每行一个样本,每列一个特征】,如果数据集以列为样本请注意转置!运行前需安装matlab遗传算法工具箱。
1