基于python实现的广度优先遍历搜索(BFS)实验源码+代码详细注释+项目说明+实验结果及总结.7z 广度优先搜索算法(英语:Breadth-First-Search,缩写为BFS),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。BFS是一种盲目搜索法,目的是系统地展开并检查图中的所有节点,以找寻结果。 BFS会先访问根节点的所有邻居节点,然后再依次访问邻居节点的邻居节点,直到所有节点都访问完毕。在具体的实现中,使用open和closed两个表,open是一个队列,每次对open进行一次出队操作(并放入closed中),并将其邻居节点进行入队操作。直到队列为空时即完成了所有节点的遍历。closed表在遍历树时其实没有用,因为子节点只能从父节点到达。但在进行图的遍历时,一个节点可能会由多个节点到达,所以此时为了防止重复遍历应该每次都检查下一个节点是否已经在closed中了。
基于python实现的遗传算法实验源码+详细注释+项目说明+实验结果及总结.7z 人工智能课程作业 遗传算法具体步骤: (1)初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P (2)个体评价:计算种群P中各个个体的适应度 (3)选择运算:将选择算子作用于群体。以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代 (4)交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉 (5)变异运算:在变异概率的控制下,对群体中的个体进行变异,即对某一个体的基因进行随机调整 (6) 经过选择、交叉、变异运算之后得到下一代群体P1。
python实现基于改进的差分进化算法求解柔性作业车间调度问题源码+项目说明.7z 问题规模以(工件J*工序P*机器M)表示,例如J20P10M10表示共有20个工件,每个工件有10个工序,总共有10个加工机器可供选择。data文件夹中的文件表示程序所用的数据,其中data_first文件的问题规模是J10P5M6,data_second文件的问题规模是J20P10M10,data_third文件的问题规模是J20P20M15。对于其中数据的解释:横向表示工序,纵向表示机器,每个数值表示机器加工工序的耗时,工序和机器都是按顺序排列的。以data_first.txt文件为例,前五行分别表示第一个工件的5个工序分别在6台机器上加工的时间,第5-10行表示第二个工件的5个工序分别在6台机器上加工的时间,以此类推。 关于编码,本项目采用的是同类问题常用的编码方式,参考论文“基于改进遗传算法的柔性作业车间调度问题研究”,与该论文所述的编码方式不同的是,本项目的编码中第一段为工序编码,第二段为机器编码。
基于Pytorch框架自定义7层卷积神经网络模型实现垃圾分类系统源码+数据集+项目说明(人工智能期末作业).zip 垃圾分类 实验要求: 利用深度学习模型完成垃圾分类 图片数据集来源:https://momodel.cn/explore/5d411ace1afd9427c236eab5?type=dataset Result: 使用 PyTorch 自定义 7 层卷积神经网络加 2 层全连接层的分类模型
基于机器视觉实现昆虫识别计数系统python源码+数据集+模型+详细项目说明.zip 【项目任务】 图片中昆虫虫体计数 PyQt和OpenCV结合做出基本界面 摄像头Frame中检测虫体数目,并在界面中显示标出 学习昆虫图像特征的提取,参考论文中提出的几个特征量 提取特征量并进行保存 按照神经网络方法搭建训练模型 搭建了线性SVM分类训练器 将特征提取和UI界面建立连接,实现拍照和预测判断一体 【机器学习训练算法】
基于opencv传统数字图像处理实现车道线检测_python_c++源码+项目说明.7z 【实现方法】 实现车道线检测,主要包含两部分操作 道路图像的处理,主要包括灰度图转换、基于高斯平滑的图像去噪、基于Canny算法的边缘提取。 车道线检测方法,主要包括获取感兴趣区域(ROI)、形态学闭运算、基于Hough变换的直线检测。
2022-12-13 17:26:28 23.96MB opencv 车道线检测 c++ 项目源码
课程作业_Python+OpenCV实现车道线检测源码+项目说明.7z 【图像处理】 图像处理主要是先对图像进行灰度处理,高斯模糊,然后对其进行canny边缘检测,最后对得到的图像进行roi掩膜处理,进一步缩小范围。 【霍夫变换】 霍夫变换(Hough)是一个检测间断点边界形状的方法。它通过将图像坐标空间变换到参数空间,来实现直线与曲线的拟合。 在图像坐标空间中,经过点的直线表示为: (1) 其中,参数a为斜率,b为截矩。其中,参数a为斜率,b为截矩。 通过点 点的直线有无数条,且对应于不同的a和b值。 如果将和视为常数,而将原本的参数a和b看作变量,则式子(1)可以表示为: (2) 这样就变换到了参数平面a−b。这个变换就是直角坐标中对于点的Hough变换。 离群变换和最小二乘拟合 视频流的读写等等,更多详细说明介绍看项目说明
2022-12-13 17:26:27 449KB opencv 车道线检测 图像处理 python
python实现基于区域二元线性回归模型进行图像恢复源码+项目说明(人工智能期末作业).7z 图像恢复 实验要求: 生成受损图像,函数接口 noise_mask_image 受损图像是由原始图像添加了不同噪声遮罩(noise masks)得到的 噪声遮罩仅包含 {0,1} 值。对原图的噪声遮罩的可以每行分别用 0.8/0.4/0.6 的噪声比率产生的,即噪声遮罩每个通道每行 80%/40%/60% 的像素值为 0,其他为 1。 使用区域二元线性回归模型,进行图像恢复。 评估误差为所有恢复图像与原始图像的 2-范数之和,此误差越小越好。 Result: 使用线性模型以 10 x 10 的区域为单位,进行像素预测,直到完成整张图片的像素预测,完成图像恢复
SJTU数字图像处理课设_传统图像处理结合yolov5算法实现电车轨道ROI区域标注及障碍物检测项目源码+项目说明.7z 【SJTU数字图像处理课程设计】 采用传统的数字图像处理方法(边缘检测,透射变换,霍夫变换等)对视频中的电车轨道进行检测和标注,并标注轨道所处的ROI区域,基于此ROI区域使用当下较为流行的YOLOv5目标检测深度学习算法进行区域内的障碍物识别与检测并将其标注。算法最终效果较好,可准确的检测两种环境(白天和夜晚)下的电车轨道并对轨道附近障碍物进行识别。算法识别效率为17FPS,效果较好。 主要任务为完成有轨电车轨道与轨道上障碍物的检测
毕设新项目 基于SVM和LSTM实现的购物平台商品评论情感对比分析毕设源码+数据集+模型+项目说明.7z 【项目介绍】 使用Selenium模拟真实登录行为,并爬取数据 数据清理 将词汇向量化 使用jieba精确模式进行分词,构造词典 创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引 分类模型对比。 【备注】主要针对正在做毕设的同学和需要项目实战的机器学习、深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
2022-12-13 13:26:04 49.86MB 机器学习 LSTM SVM