道路平均照度Eav、道路照明功率密度LDP计算
2024-09-11 17:17:24 27KB
1
JTT 1076-2016 道路运输车辆卫星定位系统 车载视频终端技术要求.pdf JTT 1077-2016 道路运输车辆卫星定位系统 视频平台技术要求.pdf JTT 1078-2016 道路运输车辆卫星定位系统 视频通讯协议.pdf
2024-09-09 11:09:00 21.81MB 1076 1077
1
三维激光点云技术是现代地理信息系统(GIS)和自动驾驶领域中的核心技术之一,它通过使用激光雷达(LiDAR,Light Detection and Ranging)设备来获取环境的三维空间信息。车载点云数据,如标题和描述中提及的,是通过安装在车辆上的LiDAR系统收集的,用于描绘道路、建筑物、交通设施等周围环境的精确三维模型。 **3D 三维激光点云数据** 3D激光点云数据是通过激光雷达扫描仪生成的大量三维坐标点集合,每个点代表一个空间位置,具有X、Y、Z坐标值以及可能的其他属性如反射强度、颜色等。这种数据类型广泛应用于测绘、地质、环境科学、城市规划、自动驾驶等多个领域。点云数据能够提供高精度的地形和地表特征,为复杂环境的分析和建模提供了强有力的支持。 **道路数据** 道路数据在三维激光点云中尤为重要,尤其是在自动驾驶和智能交通系统中。通过对道路点云数据的处理,可以提取路面边界、车道线、交通标志、路缘石等关键元素,用于构建高精度的数字地图,支持车辆的自主导航和避障功能。例如,通过点云数据分析,可以识别出路面的坡度、曲率,这对于车辆控制和安全驾驶至关重要。 **LAS 文件格式** .LAS是激光雷达数据的标准文件格式,由美国激光雷达协会(ASPRS)制定。它是一种二进制格式,能够存储点云数据的原始测量值和附加信息,如时间戳、RGB颜色、激光脉冲返回次数等。LAS文件可以有效地存储大量点云数据,并且有多种开源和商业软件支持对其进行读取、处理和分析。 **车载点云** 车载点云数据是通过安装在车辆上的移动LiDAR系统收集的。这种系统通常包括高精度GPS和惯性测量单元(IMU),以确定点云的地理位置和姿态信息。车载点云数据的获取可以实现连续、动态的环境扫描,适用于实时路况监测、道路维护评估和自动驾驶车辆的环境感知。 "三维激光点云车载点云道路点云数据"是一个涵盖了地理信息技术、自动驾驶和数据处理的综合性主题。通过分析和处理.LAS格式的点云数据,我们可以获得道路的详细三维模型,进而推动智能交通系统的进步和自动驾驶汽车的安全行驶。对于迎宾路车载数据的分析,可以进一步提取道路特征,进行道路状况评估、交通流量分析,甚至为自动驾驶算法的训练提供宝贵的数据支持。
2024-08-26 18:19:02 884.84MB 道路数据 车载点云
1
ISO 34502-2022 道路车辆 - 自动驾驶系统的测试场景 - 基于场景的安全评估框架(中文版)
2024-08-23 16:18:18 8.2MB 自动驾驶
1
该数据集是针对道路状况和特征的专门设计,主要用于计算机视觉和图像处理领域的研究,特别是自动驾驶、智能交通系统以及城市规划等领域。数据集中包含了不同类型的路面情况,如自行车道、坑洼、道路沥青以及校园路等,这些信息对于训练机器学习模型识别和理解道路环境至关重要。 1. **自行车道**:这部分数据可能包括了专门供自行车行驶的道路标记和设施,如专用自行车道的线段、标志和符号。这对于自动驾驶车辆在与骑行者共享道路时的安全导航尤其重要。 2. **坑洼**:坑洼是路面常见的破损类型,可能由路面老化、恶劣天气或重型车辆造成。识别坑洼有助于车辆提前预判,避免颠簸或潜在事故。 3. **道路沥青**:道路沥青是道路的主要构成部分,数据集中可能包含各种状态的沥青路面,如新铺、磨损、裂缝等,这有助于分析道路维护需求和路况评估。 4. **校园路**:校园内的道路环境通常有别于城市主干道,可能涉及行人多、交通规则特殊等情况。数据集可能包含特定的校园道路特征,如人行道、减速带等。 5. **道路标志**:道路上的交通标志用于指导交通流,数据集可能包含停车标志、速度限制标志、警告标志等,这对于自动驾驶系统的理解和遵循交通规则至关重要。 6. **其他特征**:描述中提到的小巷路、猫眼(反光路钉)、裂缝、补丁、坑洞、道路铺设和未铺设、speedBump(减速带)、雨水沟、水坑等,都是实际道路环境中常见的元素,它们可以帮助模型理解复杂的道路条件。 7. **分割数据集**:这个数据集是分割类型的,意味着每个图像都已被精确地标记出各个元素的边界,为像素级别的语义分割提供了基础。这样的数据有利于深度学习模型学习道路特征,并实现精细化的识别。 8. **文件名列表**:"道路识别数据集"可能包含多个子目录或文件,每个代表一个特定的道路场景或特征类别,方便研究人员按需选取和处理。 这个数据集提供了一个丰富的资源,可以用于训练和验证道路识别算法,帮助改进自动驾驶系统、交通监控系统和城市基础设施的规划。通过深度学习模型对这些数据进行分析,可以实现更准确的路况预测、交通流量控制和道路维护决策。
2024-07-25 15:36:53 543.15MB 数据集
1
《基于JSP+SQL的智能交通道路管理系统》 在当今社会,随着城市化进程的加速,交通管理成为城市管理的重要环节。为了提升交通效率,减少交通事故,智能交通系统(Intelligent Transportation System,简称ITS)应运而生。本项目是基于JSP技术和SQL数据库构建的智能交通道路管理系统,旨在实现对交通数据的高效采集、存储、分析和应用。 JSP(JavaServer Pages)是一种动态网页技术,由Java语言编写,能够与后端服务器进行交互,为用户提供实时、动态的网页内容。JSP的优势在于其与Java语言的紧密结合,能够方便地调用Java类库,实现复杂的业务逻辑。在本系统中,JSP主要负责用户界面的展示和用户请求的处理,通过JSP脚本和JavaBean组件实现数据的动态展示和交互功能。 SQL(Structured Query Language)是用于管理和处理关系数据库的标准语言。在这个智能交通道路管理系统中,SQL起到了关键作用,它负责存储和管理大量的交通数据,如交通流量、车辆信息、道路状况等。通过SQL查询,系统能够快速检索和更新数据,支持实时的交通监控和决策支持。 系统的具体功能可能包括以下几个方面: 1. 数据采集:系统通过各种传感器设备收集交通数据,如车流量、速度、车辆类型等,并将这些数据存储到SQL数据库中。 2. 数据处理:系统对收集的数据进行分析处理,例如计算平均车速、预测交通拥堵等,为决策提供依据。 3. 实时监控:通过JSP页面展示当前的交通状态,如地图上标注的车辆位置、交通流线等,用户可以实时查看道路情况。 4. 警告提示:当检测到异常情况,如交通事故或交通堵塞,系统能自动触发警告,提醒相关部门及时处理。 5. 报表生成:系统可自动生成交通统计报表,如日/周/月的交通流量报告,供管理者参考。 6. 决策支持:基于历史数据分析,系统可提供优化建议,如调整信号灯控制策略,以提高道路通行能力。 7. 用户管理:系统还包含用户权限管理模块,确保数据的安全性,不同级别的用户可访问不同的功能和数据。 在开发过程中,"任务书"会详细列出项目的目标、任务分解、进度安排等;"论文"则会全面介绍系统的架构设计、技术选型、实现过程和效果评估;"外文翻译"可能是参考了国外先进的交通管理系统技术;"开题报告"阐述了研究背景、意义、研究内容和方法;"文献综述"则总结了前人在此领域的研究成果,为项目提供了理论基础。 这个基于JSP+SQL的智能交通道路管理系统是现代城市交通管理的有力工具,它利用先进的信息技术,实现了交通数据的智能化管理和应用,对提升城市交通效率、保障交通安全具有重要意义。
2024-07-18 14:31:40 215KB 毕业设计 论文
1
道路匹配算法是GIS(地理信息系统)领域中的一个重要技术,它主要负责将移动设备或车辆上的GPS数据与地图数据库中的道路网络进行精确匹配,以便获取准确的位置信息和行驶路径。在不同时态的变化检测中,这一算法能帮助我们识别道路的新增、删除、改道等动态信息,对于交通管理、导航系统更新、城市规划等领域具有重要意义。 Java是一种广泛使用的编程语言,尤其在开发跨平台应用和服务方面。在本项目中,Java被用来实现矢量道路变化检测算法,这表明代码具有良好的可移植性和可维护性。Java的丰富的类库和强大的面向对象特性使得处理复杂的GIS数据和算法变得更加方便。 我们需要理解矢量道路数据的基本结构。矢量数据通常由一系列几何对象表示,如线(道路)、点(交叉口)和多边形(区域)。道路通常被表示为线串,由多个线段连接而成,每个线段包含起点和终点坐标。在变化检测中,算法会比较不同时期的矢量数据,寻找几何形状和属性的差异。 道路匹配算法的核心步骤可能包括以下几个方面: 1. 数据预处理:对原始GPS轨迹数据进行清洗和格式化,去除噪声点,确保数据质量。这通常涉及到滤波技术,如Kalman滤波或滑动窗口平均法。 2. 距离计算:使用某种距离度量方法,如欧氏距离或曼哈顿距离,来衡量GPS点到道路网络中各线段的距离。这一步骤可能需要高效的搜索策略,如kd树或R树,以减少计算复杂性。 3. 匹配策略:确定最佳匹配规则,如最近邻匹配、最短路径匹配或者基于概率的匹配模型。这可能涉及到Dijkstra算法、A*算法或者贝叶斯网络。 4. 变化检测:对比不同时间点的道路网络,通过比较匹配结果,找出新增、删除或修改的路段。这可能需要用到图像处理或模式识别技术,例如差分分析。 5. 结果后处理:对检测到的变化进行验证和修复,以消除误报。这可能需要结合其他数据源,如卫星影像或实地调查数据。 在`src`目录中,包含了算法的源代码实现,可能有若干个类和方法,用于处理数据输入、匹配逻辑、变化检测和输出结果。`javadoc`目录则提供了相应的API文档,详细解释了每个类和方法的功能及用法,对于理解和使用这个算法非常有帮助。 这个Java实现的矢量道路变化检测算法旨在解决GIS中的一个重要问题,即如何精确地识别和跟踪道路网络的动态变化。通过对GPS数据和矢量地图数据的智能处理,该算法能够为交通管理和城市规划等应用场景提供有价值的信息。
2024-07-10 13:24:58 2.74MB java
1
ISO 11898-2 道路车辆-控制器局域网(CAN)
2024-07-04 17:25:02 1.69MB
1
JT∕T 1076-2016 道路运输车辆卫星定位系统 车载视频终端技术要求
2024-06-25 15:21:03 4.06MB
1
附件 网点坐标、订货量、配送道路的数据表.xls
2024-06-20 23:00:14 32KB
1