这是一个实现简单,准确率较高的方法。 一、本方法基于颜色特征实现车牌定位。 在HSI空间实现蓝色查找,思路来自博客园 silenceer 的博客《车牌识别LPR(五)-- 一种车牌定位法》[1]。 通过对疑似区域求外接矩形判断车牌区域,思路来自博客园 计算机的潜意识 的博客 《EasyPR--开发详解(4)》[2]。 二、通过垂直投影和连通域分析实现字符分割。 三、通过3层神经网络实现字符识别。 参考 Andrew Ng 在 coursera 上的机器学习课程[3]。
2023-05-08 20:46:36 5.53MB matlab 机器学习
1
用pycharm实现的车牌识别系统,可视化用的pyqt5,图像处理用的opencv+pillow,用svm训练模型,文档为全部代码,实现功能是:1.上传本地图片进行识别 2.打开摄像头进行识别
2023-05-08 20:43:03 7.47MB 车牌识别全部代码
1
基于Altera FPGA开发板实现了搭载有软核的车牌实时识别系统。 全国大学生集成电路创新创业大赛。 ARM 片上系统设计挑战赛。 本系统通过 Verilog 在硬件平台实现车牌识别算法。测试识别正确率均在 95%以上,且平均正确率为 98.5%。
2023-05-04 20:00:40 52.75MB FPGA ARM 车牌识别 数字识别
1
本系统具有友好的用户操作界面,可以对车牌识别进行结果的展示,通过界面对车牌识别进行分析。 基于 CNN+Yolo 的车牌识别是一种先进的计算机视觉技术,它可以自动识别道路上的车辆并记录下车牌信息。该技术结合了深度学习和目标检测算法,具有高准确性和高效性。 在该技术中,CNN 是一种用于图像分析的深度学习算法,它可以对图像进行自动分类和识别。Yolo 是一种目标检测算法,它可以在图像中自动检测出目标并给出其位置和大小。这两种算法的结合使用可以实现高效的车牌识别。 在实现过程中,首先需要对图像进行预处理,包括去噪、图像增强和尺寸归一化等步骤。接着,使用 CNN 算法对图像进行特征提取,并将其与训练数据进行比对,从而识别出车牌的位置和类型。同时,使用 Yolo 算法对车牌进行精确定位和检测,以确保车牌的完整性和准确性。 该技术的应用场景广泛,例如智能交通系统、停车场管理、安防监控等。在未来,随着计算机视觉技术的不断发展和完善,基于 CNN+Yolo 的车牌识别技术将会得到更广泛的应用,为人们的生活带来更多的便利。同时,该技术还可以应用于车牌的伪造和篡改检测,有助于保障交通安全和社会稳定。
2023-05-03 13:47:23 288.32MB 深度学习 cnn python
1
Android版本车牌检测和识别算法APP,在普通Android手机上可以达到实时的检测和识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。详细说明请查看:智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时识别车牌)》:https://blog.csdn.net/guyuealian/article/details/128704242
1
车牌识别,YOLOv3、Densenet、卷积神经网络、python
2023-04-20 09:52:54 271.82MB 车牌识别 深度学习 python
1
【图像识别】基于模板匹配车牌识别matlab源码含GUI.md
2023-04-18 23:04:37 12KB 算法 源码
1
利用网上找的数据集进行标注训练,适合自己的毕业课题,目标输出例子 京A 88888 可以增加数据集 识别新能源号牌 ,需要帮助可以联系本人
2023-04-18 16:33:18 601MB 车牌识别 目标检测 毕设 深度学习
1
本应用为“车牌检测与识别”,检测模型基于卷积神经网络训练,训练平台为yolov5s,车牌检测训练样本数据集大概有5000张,车牌识别训练样本数据集大概有2000张。本应用包括以下三部分:训练数据集(已经标注,可采用yolov5进行训练)、车牌检测模型文件和车牌字符识别模型文件(包括pt格式和onnx格式)、基于java swing构建的demo程序(基于此,可以扩展成WEB应用、微服务等)。
2023-04-18 10:03:13 318.23MB 目标检测 车牌检测 车牌识别 yolov5
1
Python3项目开发的22套源代码资源,这里是其中的智能停车场车牌识别计费系统Python源代码,内部含有智能停车场车牌识别计费系统的程序使用说明哦!
1