针对目前主流的目标检测算法检测效率不高以及小目标检测困难的问题,提出一种改进的 SSD( SingleShot MultiBox Detector) 算法,并将其应用于道路环境车辆目标的检测。设计一个目标检测网络结构,对高层特征图不进行降采样,使用空洞卷积和深度可分离卷积层来提高模型性能,并使用 K-means 算法来对模型参数进行优化。在 Udacity 道路环境数据集上进行对比实验,结果表明,该算法对车辆目标检测的平均精准度达到了58. 01% ,检测速度达到了 86. 26 帧每秒,相比原 SSD 算法有明显提升。
2022-06-26 16:08:35 2.75MB SSD 行人检测 优化改进 目标检测
行人检测数据集特征svm模型
2022-06-17 16:06:28 220.86MB 行人检测
1
行人检测的数据集.zip
2022-06-16 09:05:07 20.21MB 数据集
针对视频和图像中快速、准确的行人检测问题,提出了一种分层次的、全局信息和局部信息相结合的行人检测算法。该方法以随机森林分类器为基础,利用图像金字塔模型融合行人的多层信息。首先,在低尺度空间利用主方向模板(DOT)特征和随机森林算法训练行人的全局分类器,第一层检测在低尺度空间中进行,找到行人的候选区域;然后,在高尺度空间提取图像块集合,基于部件随机森林训练行人的局部外观和几何约束模型;最后,基于上层的候选区域,在高尺度空间利用霍夫投票进行第二层精确检测。实验结果表明,该方法有更低的时间复杂度,并提升了行人检测的准确率,全局信息和局部信息的层次融合,能有效解决快速、准确的行人检测问题。
1
SSD方法只检测行人,模型比较少,速度很快,大家可以看看效果
2022-06-05 20:14:58 49.6MB CV
1
人工智能-机器学习-智能视频中的行人检测技术研究.pdf
2022-06-02 09:11:15 2.6MB 人工智能 文档资料 机器学习 音视频
基于HOG特征提取的svm行人头肩训练,提供训练集和测试集的图片,结果导出在txt文件中。
2022-05-31 09:50:18 8.47MB HOG SVM 头肩检测 行人检测
1
1、YOLO车辆行人识别数据集 目标类别为person和car 共2个类别,5000多张行人车辆检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
1、yolov5车辆行人检测,包含yolov5s和yolov5m两种训练好的车辆行人检测权重,以及PR曲线,loss曲线等等,map达90% 多,在一万多张交通场景行人车辆数据集中训练得到的权重,有pyqt界面,目标类别为person和car 共2个类别,并附5000多张行人车辆检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,python代码
1、yolov3车辆行人检测,包含yolov3训练好的车辆行人检测权重以及PR曲线,loss曲线等等,map达90% 多,在一万多张交通场景行人车辆数据集中训练得到的权重,目标类别为person和car 共2个类别,并附5000多张行人车辆检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,python代码,可以和YOLOv5共用一个环境,配置好环境就可以加载已经训练好的模型直接进行测试,得出结果