这篇论文的思路特别好: 我们提出了一种用于脑电情感识别的端到端深度学习方法。该神经网络综合考虑了脑电信号的空间信息、时间信息和注意力信息。将CNN,RNN和通道注意力机制(channel-wise attention)和扩展自我注意力机制(self-attention mechanisms)混合起来,同时通过通过注意力机制计算出各个通道权重,筛选出更有价值的通道。同时采用DE作为频域特征,结合时域特征和空间特征三大特征相融合考虑。模型方面:CNN+RNN(CNN-RNN)、通道性注意机制+CNN+RNN(A-CNN-RNN)和CNN+RNN+扩展自我注意机制(CNN-RNN-A)、连续卷积神经网络(Conti-CNN)、图卷积神经网络(GCNN)和卷积复发注意力模型(CRAM)。介绍了六种深度学习方法和两种传统方法进行比较,六大模型相互对比,在DEAP数据库的效价和觉醒分类任务中,平均情绪识别准确率分别为92.74%和93.14%!希望大家能好好理解阅读。 我们将通道性注意整合到CNN中,CNN可以提取空间注意特征,通道性注意可以提取通道间的注意信息。
2022-04-06 03:12:02 20.97MB cnn rnn 人工智能 深度学习
运行了几个机器学习模型,根据DEAP数据集对4种维度的情绪进行分类:唤醒、效价、喜欢/不喜欢和支配。使用了两种类型的特征提取工具:快速傅立叶变换(FFT)和连续小波变换(CWT),并比较了它们在情绪分类任务中的结果。 将FFT和CWT分别结合CNN,并进行对比,最终与普通的机器学习模型做对比, 本项目实现了: 1. 模拟和实验模型设置的细节,以及详细介绍了使用的超参数,并介绍了所有模型的细节。 2. 介绍并讨论从运行FFT和CWT特征提取算法的模型中获得的结果,以及与其他最先进(SOTA)模型的比较。 3. 总结报告,并讨论了未来在脑电信号处理领域中使用深度学习技术来缓解数据非平稳性的工作。还将讨论处理EEG信号的其他方法。
2022-04-06 03:11:49 3.23MB cnn 深度学习 机器学习 脑电情绪识别
提出了一种基于时频域特征的情绪检测方法。使用Box-and-whisker plot(箱线图)选择最佳特征,然后将其输入SVM分类器,用于训练和测试DEAP数据集,其中考虑了32名不同性别和年龄组的参与者。实验结果表明,该方法对测试数据集的准确率为92.36%。此外,所提出的方法比最先进的方法表现出更高的准确性。 本文利用DEAP数据集预处理的脑电信号对两种维度进行四分类,即效价和觉醒。首先通过应用FFT将数据集中的样本从时域转移到频域,然后提取对情绪识别特别重要的α、β和θ频带。随后,根据每个情绪对应的象限对提取的频带进行平均,并使用平均频带值提取统计特征。然后,对提取的特征进行缩放,并将各种特征组合输入支持向量机分类器(SVM)进行情感识别。据观察,我们的方法使用偏度、峰度和波熵特征预测情绪,准确率为92.36%。与现有的DEAP数据集方法相比,我们提出的模型显示了更好的结果。
基于DEAP的四分类脑电情绪识别算法。 使用该模型从价-觉醒平面对四个情绪区域进行分类:高价-高觉醒(HVHA)、高价-低觉醒(HVLA)、低价-高觉醒(LVHA)和低价-低觉醒(LVLA)。 并提出了两种模型来解决这一问题:一维卷积神经网络(CNN-1D)结合LSTM,第二个模型为一维卷积神经网络(CNN-1D)结合GRU。 实验结果表明,该方法在1DCNN-GRU模型和1DCNN-LSTM模型中的训练准确率分别为96.3%和97.8%。因此,这两种模型对执行这种情绪分类任务都非常好。 这是专门为解决消失梯度问题而设计的,消失梯度问题通常成为时间序列数据集中的一个问题。
2022-03-29 09:33:31 1005KB 脑电情绪识别 deap cnn lstm
针对脑电信号的注意力识别精度问题,本文应用深度森林的算法进行仿真研究。首先对原始脑电信号通过小波分析进行预处理去噪,然后采用深度森林的方法进行分类识别。实验分别对6位受试者在注意和非注意两种状态下的脑电信号进行分析,结果表明,对注意力状态识别的准确率达到了95%以上,同时对通用数据库中清醒和睡眠两种状态下的脑电数据进行识别,也取得了较高的识别率,结果证明了该算法对脑电信号注意力识别的准确率是可靠的。
1
该文提出了振幅整合脑电图用于正常年轻人睡眠脑电分期的方法。记录了13例正常年轻人约8小时睡眠脑电数据,分为训练组(6例)和测试组(7例)。计算训练组每一例的振幅整合脑电图(aEEG);提取aEEG的上边带曲线作为其特征曲线;提取不同分期的aEEG上边带中位数和四分位距特征;将这些特征进行综合统计分析,得出aEEG在不同睡眠期的边界和波动范围的数值指标;利用此指标对训练组和测试组的脑电数据进行睡眠自动分期。测试组和训练组的分期结果与ZEO系统结果有较好的一致性,证明了aEEG的一组特征值作为睡眠分期决策指标
2022-03-17 18:54:26 1.17MB 自然科学 论文
1
让你对脑机接口硬件有个大致的认识 官方发布中文版 Ultracortex是一款可与OpenBCI系统配合使用的开源3D可打印耳机。它是记录研究级大脑活动(EEG)的工具。Ultracortex处于不断迭代中。如果您打印/组装自己的Ultracortex,我们希望能收到您的反馈。给我们发送电子邮件至contact@openbci.com或在我们上发推文(@Ultracortex&@OpenBCI)! 分步组装教程视频
2022-03-15 09:57:52 16.18MB openbci
1
内容包含了seed数据集与四份基于seed数据集的脑电情绪识别代码, 每一份代码都可以完整运行。 第一份是svm模型;第二份采用的pytorch框架,模型为svm和卷积神经网络(cnn)的混合模型。第三份是卷积神经网络(cnn)和循环神经网络(rnn)的混合模型。第四份是采用的机器学习算法,包含了五种机器学习常见的算法,例如决策树算法、朴素贝叶斯、K最近邻算法、随机森林算法等等。
针对目前癫痫发作实时自动预测困难的问题,将开展以LSTM模型为基础的癫痫发作预测的研究,构建了基于LSTM的神经网络模型对癫痫发作进行预测。将采集到的癫痫脑电数据进行预处理,然后提取单导联脑电小波能量特征,结合构建的基于LSTM的模型来识别癫痫发作前期和发作间期的状态,从而实现癫痫发作的预测。与传统的SVM和MLP相比,本方法取得了98.5%的分类精度和零误警的结果。为未来开发癫痫发作预警系统提供了理论基础,在临床应用上具有较大的潜在价值。
1