这篇论文的思路特别好:
我们提出了一种用于脑电情感识别的端到端深度学习方法。该神经网络综合考虑了脑电信号的空间信息、时间信息和注意力信息。将CNN,RNN和通道注意力机制(channel-wise attention)和扩展自我注意力机制(self-attention mechanisms)混合起来,同时通过通过注意力机制计算出各个通道权重,筛选出更有价值的通道。同时采用DE作为频域特征,结合时域特征和空间特征三大特征相融合考虑。模型方面:CNN+RNN(CNN-RNN)、通道性注意机制+CNN+RNN(A-CNN-RNN)和CNN+RNN+扩展自我注意机制(CNN-RNN-A)、连续卷积神经网络(Conti-CNN)、图卷积神经网络(GCNN)和卷积复发注意力模型(CRAM)。介绍了六种深度学习方法和两种传统方法进行比较,六大模型相互对比,在DEAP数据库的效价和觉醒分类任务中,平均情绪识别准确率分别为92.74%和93.14%!希望大家能好好理解阅读。
我们将通道性注意整合到CNN中,CNN可以提取空间注意特征,通道性注意可以提取通道间的注意信息。