提供一个自用的粒子群算法和例子,希望能有所帮助。粒子群优化算法(Partical Swarm Optimization PSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。由于PSO操作简单、收敛速度快,因此在函数优化、 图像处理、大地测量等众多领域都得到了广泛的应用。 随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决,主要有以下几种发展方向。
2023-02-07 16:24:37 4KB 粒子群算法 优化算法
1
首先声明,本篇文章直接包含所有matlab源代码,直接复制粘贴即可运行,全部都是源代码,可以自己更改的源代码!(不是.p文件!!!,浅浅痛斥一下很多文章为了盈利,还给程序加密!谴责!!)以西储大学数据集为例,选用105.mat中的X105_BA_time.mat数据。 首先进行VMD分解,采用麻雀优化算法(SSA)对VMD的两个关键参数(惩罚因子α和模态分解数K)进行优化,以最小包络熵为适应度值。其他智能优化算法同样适用,关键要学会最小包络熵代码的编写,实验过程中,会实时显示每次寻优后的最小包络熵值和VMD对应的两个最佳参数。本次寻优共100次(自己可以随意更改寻优次数)。
1
基于Hadoop的K-Means聚类算法优化与实现,陈萍,何健伟,本文针对传统K-Means聚类算法不适合海量大数据挖掘,并且对异常离群点数据非常敏感,结合Hadoop云计算平台以及MapReduce并行编程框架,��
2023-01-15 11:32:23 361KB K-Means算法;大数据;Hadoop;并行;
1
针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。
1
MATLAB实现DBO-BP多输入单输出回归预测(完整源码和数据) 螳螂算法优化BP神经网络多输入回归预测,数据为多输入回归数据,输入2个特征,输出1个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
引言   是如何把分布在不同地理位置上的计算资源、存储资源、通信资源、软件资源、信息资源和知识资源等通过Internet整合成一台巨大的超级计算机,实现各种资源的全面共享,是网格任务调度的主要工作任务。资源管理是网格技术的关键。   用户通过向网格系统提交计算任务,以此来共享网格资源,网格调度程序再把这些任务分配给合适的资源。高效的调度策略或算法可以充分利用网格系统的处理能力,达到提高应用程序性能的面对。在目前的网格调度算法研究中,主要目标是提高吞吐率和系统的使用率,实现经济系统和用户的约束条件,使得在整个系统中网格应用任务的完成时间达到最小化。   遗传算法(IGA)是建立一个调度的集合并从
1
给出基于TMS320DM642实验平台的MPEG-4实时编码实现方法。为了达到实时编码,在分析DM642硬件结构和指令特点的基础上,讨论了视频编码器的实现和优化策略,最后达到CIF格式(352×288)图像的实时编码。说明采用高性能性的DM642芯片,可满足视频实时编解码的要求。
2022-12-30 17:58:33 142KB 自然科学 论文
1
基于Matlab的GUI设计遗传算法优化软件.pdf
2022-12-29 20:16:09 255KB 基于Matlab的GUI设计遗传
1
MATLAB实现SSA-SVM麻雀算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现GWO-SVM灰狼算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。