针对视觉背景提取(Vibe)运动目标检测算法存在的鬼影及阴影问题,利用鬼影与背景相似而运动目标与背景差异大的特点,提出了一种基于前景和邻域背景像素直方图相似度匹配的方法,快速检测鬼影并更新背景模型;利用阴影的颜色特性和纹理不变性,提出在亮度和色度分离的YCbCr色彩空间中先根据颜色特性得到候选阴影区域,再利用完全局部二值模式算子(CLBP)提取区域的详细纹理特征,进一步检测与去除阴影。在公开视频数据库CDnet-2012上进行仿真,仿真结果表明,该算法能够保证运动目标被完整检测的同时快速去除鬼影和阴影,其检测精度比原Vibe算法提高了21.53%。
2022-02-08 14:30:45 7.12MB 图像处理 运动目标 Vibe算法 鬼影消除
1
Tiny-DSOD: Lightweight Object Detection for Resource Restricted Usage,The code is based on the SSD and DSOD framework.
2021-12-29 10:58:01 16.5MB 目标检测 小模型
1
基于光流的动态背景运动目标检测算法。 本文在分析HS算法运算量的基础上,提出一种结合金字塔Lucas-Kanade( LK) 光流和HS光流的动态场景运动目标检测算法
2021-12-26 15:32:24 2.19MB 动态背景 光流法
1
目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色
2021-12-21 15:45:22 2.23MB 深度学习 目标检测
1
针对传统Vibe运动目标检测算法提取的目标存在Ghost区域、并且在目标有阴影时检测出的前景区域存在阴影的问题,本文提出了一种结合快速初始化背景建模和阴影去除的Vibe运动目标检测算法。首先采用改进的帧差背景建模方法快速初始化背景模型;然后利用Vibe算法找出当前帧内所有可能目标的前景区域;最后引入HSV模型去除前景目标区域中存在的阴影。实验结果表明,本算法可以有效消除Ghost区域,并且很好地去除前景目标区域里存在的阴影。
1
RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法训练的指导
2021-12-20 17:16:25 17.4MB 检测算法
1
随着深度学习的发展,卷积神经网络在目标检测中取得了一系列研究成果. 相比基于人工特征构造的传统的目标检测 算法,基于深层卷积神经网络的算法具有特征自动提取,泛化能力强的优点,有较好的鲁棒性. 本文首先介绍了卷积神经网络在 目标检测基础任务图像分类上的进展,然后按照目标检测算法评价指标、算法框架以及公共数据集三个方面重点分析和比较近 年来基于深度学习模型的目标检测算法的研究情况,最后对目标检测算法未来的发展进行展望
2021-12-15 16:07:33 1.58MB 卷积 神经网络 综述
1
针对目前目标检测技术中小目标检测困难问题, 提出了一种基于SSD (Single Shot multibox Detector) 改进的小目标检测算法Bi-SSD (Bi-directional Single Shot multibox Detector). 该算法为SSD的浅层特征设计了小目标特征提升模块, 在网络的分类和回归部分结合多尺度特征融合方法和BiFPN (Bi-directional Feature Pyramid Network) 结构, 设计了6尺度BiFPN分类回归子网络. 实验结果表明, 在PASCAL VOC和MS COCO目标检测数据集上Bi-SSD相比原始的SSD算法有更好的检测性能. 其中VOC2007+2012上Bi-SSD算法的mAP指标达到了78.47%相较SSD算法提升了1.34%, 在COCO2017上Bi-SSD算法的mAP达到26.4%提升了接近2.4%.
1
基于稀疏感知频谱估计的有效运动目标检测算法
2021-12-14 20:17:23 1.62MB 研究论文
1
为提升原始SSD算法的小目标检测精度及鲁棒性,提出一种基于通道注意力机制的SSD目标检测算法。在原始SSD算法的基础上对高层特征图进行全局池化操作,结合通道注意力机制增强高层特征图的语义信息,并利用膨胀卷积结构对低层特征图进行下采样扩大其感受野以增加细节与位置信息,再通过级联的方式将低层特征图与高层特征图相融合,从而实现小目标及遮挡目标的有效识别。实验结果表明,与原始SSD算法相比,该算法在PASCALVOC数据集上的平均精度均值提升了2.2%,具有更高的小目标检测精度和更好的鲁棒性。
2021-12-10 15:39:21 3.52MB SSD图像算法
1