实验一 列主元消去法 【实验内容】 1. 理解高斯顺序消去法; 2. 理解主元高斯消去法在求解精度上的优点; 3. 完成列主元消去法的程序; 4. 会用系统内置命令求解有唯一解的线性方程组; 【试验方法与步骤】 一 、 回答下面的问题 1. 什么是线性方程组直接解法和迭代解法,各自的特点和使用问题类型是什么? 2. LU 分解是直接解法还是迭代解法, L 、 U 矩阵的特点是什么,应用在哪些问题 中,请举例说明。 3. 给出一个舍入误差严重影响计算结果精度的例子,试着能否从多个角度说明产 生该问题的原因。 4. 迭代解法的收敛性有什么意义,收敛条件用什么判定? 5. 给出例子,并说 明迭代收敛的速度。 二 、 完成下列计算,写出代码 1. 用 crame 法则、用 LU 分解函数、逆矩阵函数分别完成 P35 例 3.2.1 2. 编写列主元消去法程序,完成 P35 例 3.2.1 和习题 3 第 2 题 3. 用雅克比、高斯 塞德尔和 SOR 迭代完成习题 3 第 13 题,进行收敛速度的比较 分析 第 2 页 共 13 页 【实验结果】 一、第一大题 1.线性方程组的解法 2.LU 分解法 1. LU 分解属于直接解法 2. L 矩阵特点:一个对角线上的元素全为1 的下三角矩阵(即单位下三角矩阵)。 3. U 矩阵特点:上三角矩阵 4. 应用:LU 分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式 解法 直接解法 迭代解法 定义 经过有限步算数运算,可求得方程组 的精确解的方法 用某种极限过程逐步逼近线性 方程组精确解的方法 特点 运算步骤有限、可得精确解 极限逼近思想 适用问 题类型 计算过程中没有舍入误差 向量值序列收敛于向量* x 即 *) ( limx x k k = → 举例    − = + = 3 20 26 5 2 8 x y x y    = − = = = = −    − = + = * 1 * 2 53 106 2, 1 3 20 26 50 20 80 y x x x y x y x y 即有精确解 ,所以 两式相加,得    − = + = 3 20 26 5 2 8 x y x y , 0,1,2,... 0.15 1.3 0.4 1.6 ( 1) ( ) ( 1) ( ) =     = − = − + + + k y x x y k k k k 改写为迭代公式 其结果不断逼近精确解 然后不断迭代, 取 0,得 1.6, -1.3, (0) (0) (1) (1) x = y = x = y = 第 3 页 共 13 页 3.舍入误差严重影响计算结果精度的例子 建立 dx的递推公式 x x I n n  + = 1 0 5 (教材第二页) 法1:      − = − = − 1 0 5 1 5 ln 6 ln n In n I I 法2: 由0  In  In − 1,得5In − 1  In +5In − 1  6In − 1      = − +    =  +    + =    − − − n I I I I n I n n I I n n n n n 5 1 5 1 0.0087301587 0.0087301587 2 1 ) 5 21 1 6 21 1 ( 5 1 6 1 0 1 5 1 20 20 将 1 带入上式,得 1 由于计算机只能存储有限位小数,所以在法1 中,随着n 的增大,其误差就会越来 越大,最后很大程度的偏向精确解;但是在法2 中尽管20 I 取得比较粗略,但是随着n 的增大,其误差随传播逐步缩小,所以其最后计算得到的结果是可靠的。 4.迭代解法的收敛性 迭代解法 的收敛性 意义 无线逼近精确解,便于在计算机上实现编程 收敛条件的 判定 向量值序列收敛于向量x * 即 * ( ) limx x k k = → 第 4 页 共 13 页 5.举例说明迭代收敛的速度 分别用雅可比迭代法(J)、高斯—塞德尔迭代法(G-S)、超松弛迭代法(SOR)计算方组 =            − − − − 0 1 4 1 4 1 4 1 0           3 2 1 x x x =   10 8 10 雅可比迭代 高斯—塞德尔迭代 次 数 X1 X2 X3 误差 次数 X1 X2 X3 误差 1 2.5000 2.0000 2.5000 2.1594954 1 2.5000 2.6250 3.1563 1.4570586 2 3.0000 3.2500 3.0000
2021-12-11 17:02:06 278KB 计算方法 matlab 列主元消去法 算法
C#算法 高斯消元法 求线性方程组的解 线性方程组求解 C#常用算法
1
Matlab 中Gauss消去法的原程序,此程序经过调试和验证,可用
2021-12-08 16:42:27 376B matlab Gauss消去法
1
这是用Matlab软件做的一道有关Gauss消元法的一道例题,希望对大家能够提供帮助!
2021-12-08 16:32:04 13KB 消元法(Matlab)
1
.m文件,应用列主消元法求解方程, 列主元素消去法是在高斯消去法的基础上,为了避免在akk不等于零,但相对很小时,当其作为除数会导致其他元素数量级的增长严重的舍入误差增大的现象,同时从算法上讲又相较于全主元素消去法计算量更小。
2021-12-07 15:12:13 1KB 列主消元 MATLAB
1
高斯列主元消去法求线性方程的解 高斯列主元消去法求线性方程的解 高斯列主元消去法求线性方程的解
2021-12-07 14:52:06 582B 高斯列主元消去法
1
用c++程序实现高斯列主元消去法解方程组 简单易懂
2021-12-06 23:21:26 1KB 计算方法
1
在matlab上利用牛顿迭代法和高斯消元法对牛头刨床的连杆机构进行运动分析
2021-12-06 17:49:38 302KB matlab 牛顿迭代法 高斯消元法 四连杆
1
使用java 实现的高斯消去法,有界面,可以用来算方程组和行列式
2021-12-02 12:53:39 22KB java
1
mfc图形界面写高斯消元法,用的版本为vs2015
2021-12-02 12:50:00 232KB mfc 图形界面 高斯消元法
1