以上使用了GCN, ChebNet, GAT三种图卷积来预测交通流量,只考虑了空间上的影响,没有考虑时序上的影响,所以效果有进一步提升空间。这里只是为了实现基于上述三种图卷积预测交通流量。
可以很明显看出三种模型在处理数据时的快慢和准确率。
三种模型都具有处理结构化时间序列的通用框架。它不仅能够解决交通网络建模和预测问题,而且可以应用于更一般的时空序列学习任务。
时空卷积块结合了图卷积和门控时间卷积,能够提取出最有用的空间特征,并连贯地捕捉到最基本的时间特征。
该模型完全由卷积结构组成,在输入端实现并行化,参数更少,训练速度更 快。更重要的是,这种经济架构允许模型以更高的效率处理大规模网络。