使用yolov5训练好的口罩检测模型,其中具体训练方法见我的博文《使用YOLOV5训练口罩检测模型》,链接https://blog.csdn.net/wchwdog13/article/details/128311482?spm=1001.2014.3001.5501
2022-12-14 11:27:29 13.78MB yolov5 口罩检测 深度学习 python
1
1、基于深度学习opencv实现电单车识别检测源码+模型(6800多个目标数据训练)+评估指标曲线+操作使用说明 2、模型文件使用含有6800+个目标数据集训练,训练集大且多样性充足 3、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 4、迭代200次,模型拟合较好。 5、识别一个类别:“电单车” 【备注】有相关使用问题,可以私信留言跟博主沟通。
基于yolov5算法实现交通灯识别检测源码+模型文件+评估指标曲线+使用说明 1、基于yolov5车交通灯识别检测模型_附评估指标曲线(高mAP、召回率)及使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。 【备注】有相关使用问题,可以私信留言跟博主沟通。
1、基于yolov5算法实现绝缘子识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。 4、识别类别只有“绝缘子”一类 【备注】有相关使用问题,可以私信留言跟博主沟通。
1、yolov5检测源码+EDS模型文件+使用说明 2、附有训练pr曲线、损失值曲线、召回率曲线、精确度曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。
1、yolov5检测源码+表情识别检测模型+使用说明 2、附有训练pr曲线、损失值曲线、召回率曲线、精确度曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。
1、yolov5检测源码+pcb缺陷检测模型+使用说明 2、附有训练pr曲线、损失值曲线、召回率曲线、精确度曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。
1、yolov5检测源码+安全帽佩戴检测模型+使用说明 2、附有训练pr曲线、损失值曲线、召回率曲线、精确度曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。
1、yolov5检测源码+布匹缺陷检测模型+使用说明 2、附有训练pr曲线、损失值曲线、召回率曲线、精确度曲线、mAP等评估指标曲线 3、4张3080ti训练迭代150次,模型拟合较好。
1、资源包含yolov5检测源码+车辆车牌检测模型(监控视角)+使用说明 2、附有训练pr曲线、损失值曲线、召回率曲线、精确度曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。