要解决的是一个医学图像的二分类问题,有AK和SK两种病症,根据一定量数据,进行训练,对图像进行预测。
给定图片数据的格式:
解决思路
整体上采用迁移学习来训练神经网络,使用InceptionV3结构,框架采用keras.
具体思路:
读取图片数据,保存成.npy格式,方便后续加载
标签采用one-hot形式,由于标签隐藏在文件夹命名中,所以需要自行添加标签,并保存到.npy文件中,方便后续加载
将数据分为训练集、验证集、测试集
使用keras建立InceptionV3基本模型,不包括顶层,使用预训练权重,在基本模型的基础上自定义几层神经网络,得到最后的模型,对模型进行训练
优化模型,调整超参数,提高准确率
在测试集上对模型进行评估,使用精确率、召回率
对单张图片进行预测,并输出每种类别的概率
如何加载实际数据,如何保存成npy文件,如何打乱数据,如何划分数据,如何进行交叉验证
如何使用keras进行迁移学习
keras中数据增强、回调函数的使用,回调函数涉及:学习速率调整、保存最好模型、tensorboard可视化
如何使用sklearn计算准确率,精确率,召回率,F1_
1