MATLAB实现LSTM长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现BiLSTM双向长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现GRU门控循环单元多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2020b及以上。
基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 运行环境Matlab2018b及以上。
MATLAB实现SSA-SVM麻雀算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现GWO-SVM灰狼算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现PSO-SVM粒子群算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。
基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据)
基于机器学习和深度学习的项目,内含数据集以及详细的备注源码
2022-12-18 14:27:51 3KB 机器学习 深度学习