大数据下研究生培养管理智能决策支持系统.pdf
面向大数据的企业智能决策支持系统发展趋势分析.pdf
互联网发展背景下的企业智能决策支持系统的构建.pdf
小麦病虫害防治智能决策支持系统中的模型设计.pdf
行业-电子政务-广播电视决策支持系统及其构造方法.zip
2021-08-20 14:04:33 813KB
本书论述在设计和建造数据仓库中涉及的所有主要问题,论述分析型环境(决策支持系统环境)以及在这种环境中的数据构造。主要内容包括数据仓库的设计与建造步骤,传统系统到数据仓库的迁移,数据仓库的数据粒度、数据分割、元数据管理、外部数据与非结构化数据,分布式数据仓库、高级管理人员信息系统和数据仓库的设计评审等。 本书主要是面向数据仓库的设计、开发和管理人员,以及构造和使用现代信息系统的人员,也适于信息处理方面的高校师生和从事传统数据库系统技术工作的人阅读。 目录 译者序 审、译者简介 前言 第1章 决策支持系统的发展 1 1.1 演化 1 1.2 直接存取存储设备的产生 2 1.3 个人计算机/第四代编程语言技术 3 1.4 进入抽取程序 3 1.5 蜘蛛网 4 1.6 自然演化体系结构的问题 5 1.6.1 数据缺乏可信性 5 1.6.2 生产率问题 8 1.6.3 从数据到信息 10 1.6.4 方法的变迁 11 1.7 体系结构设计环境 12 1.7.1 体系结构设计环境的层次 13 1.7.2 集成 14 1.8 用户是谁 15 1.9 开发生命周期 15 1.10 硬件利用模式 16 1.11 建立重建工程的舞台 16 1.12 监控数据仓库环境 17 1.13 小结 19 第2章 数据仓库环境 20 2.1 数据仓库的结构 22 2.2 面向主题 23 2.3 第1天到第n天的现象 26 2.4 粒度 28 2.4.1 粒度的一个例子 29 2.4.2 粒度的双重级别 31 2.5 分割问题 34 2.6 样本数据库 34 2.7 数据分割 35 2.8 数据仓库中的数据组织 37 2.9 数据仓库—标准手册 41 2.10 审计和数据仓库 41 2.11 成本合理性 41 2.12 清理仓库数据 42 2.13 报表和体系结构设计环境 42 2.14 机遇性的操作型窗口 43 2.15 小结 44 第3章 设计数据仓库 45 3.1 从操作型数据开始 45 3.2 数据/过程模型和体系结构设计环境 49 3.3 数据仓库和数据模型 50 3.3.1 数据模型 52 3.3.2 中间层数据模型 54 3.3.3 物理数据模型 58 3.4 数据模型和反复开发 59 3.5 规范化/反规范化 60 3.6 数据仓库中的快照 65 3.7 元数据 66 3.8 数据仓库中的管理参照表 66 3.9 数据周期 67 3.10 转换和集成的复杂性 70 3.11 触发数据仓库记录 71 3.11.1 事件 72 3.11.2 快照的构成 72 3.11.3 一些例子 72 3.12 简要记录 73 3.13 管理大量数据 74 3.14 创建多个简要记录 75 3.15 从数据仓库环境到操作型环境 75 3.16 正常处理 75 3.17 数据仓库数据的直接访问 76 3.18 数据仓库数据的间接访问 76 3.18.1 航空公司的佣金计算系统 76 3.18.2 零售个性化系统 78 3.18.3 信用审核 80 3.19 数据仓库数据的间接利用 82 3.20 星型连接 83 3.21 小结 86 第4章 数据仓库中的粒度 87 4.1 粗略估算 87 4.2 粒度划分过程的输入 88 4.3 双重或单一的粒度? 88 4.4 确定粒度的级别 89 4.5 一些反馈循环技巧 90 4.6 粒度的级别—以银行环境为例 90 4.7 小结 95 第5章 数据仓库和技术 96 5.1 管理大量数据 96 5.2 管理多介质 97 5.3 索引/监视数据 97 5.4 多种技术的接口 97 5.5 程序员/设计者对数据存放位置的控制 98 5.6 数据的并行存储/管理 99 5.7 元数据管理 99 5.8 语言接口 99 5.9 数据的高效装入 99 5.10 高效索引的利用 100 5.11 数据压缩 101 5.12 复合键码 101 5.13 变长数据 101 5.14 加锁管理 102 5.15 单独索引处理 102 5.16 快速恢复 102 5.17 其他的技术特征 102 5.18 DBMS类型和数据仓库 102 5.19 改变DBMS技术 104 5.20 多维DBMS和数据仓库 104 5.21 双重粒度级 109 5.22 数据
2021-08-14 22:51:57 6.66MB 数据仓库
1
当前的金融危机暴露出信息化存在如下问题: (1)IT治理不完善:高管层对信息系统建设及风险管控的重视和研究不够,决策和监督机制缺位。 (2)信息化战略规划不明晰:缺乏连贯性,规划布局不尽合理。 (3)信息化建设滞后于业务发展:信息系统平台千差万别,内 部应用系统难以实现信息共享,对数据的分析和利用难以 满足“以客户为中心”经营模式的需要。 (4)软硬件及核心技术受制于人:对系统安全造成隐患,甚至可能危及行业健康发展。 【客户价值评价指标体系】 主要包括:客户特征、行为、价值评价体系 分析方法:通过对客户基本资料、客户存取贷款记录、客户金融产品购买等信息数据进行深入分析,建立客户的群体划分标准,以针对不同客户群体进行针对性营销;建立客户消费行为的分析模型和评价指标体系,以进行客户风险管理;建立客户价值评估模型和指标体系,以对客户进行分级管理。
基于云计算的人力资源数据决策支持系统设计.pdf
2021-07-16 22:02:41 5.63MB 云计算 行业数据 数据分析 参考文献