【标题】"2017年研究生数学建模E题程序"揭示了当年数学建模竞赛中的一个实际问题,该问题涉及到了运用编程技术解决数学模型。数学建模是将现实问题转化为数学模型,通过计算和分析来找到最优解的过程。在本案例中,参赛者可能需要对某个具体情境下的问题进行分析,比如资源分配、网络优化或决策制定等。 【描述】中提到的"线性规划"是一种求解最优化问题的方法,它处理的是目标函数与约束条件都是线性的系统。线性规划广泛应用于生产计划、运输问题、资源配置等领域,通过寻找可行解中的最大值或最小值来确定最优策略。"证书规划"可能是指灵敏度分析或对偶理论,用于检验模型的稳定性并了解参数变化对解的影响。而"弗洛伊德算法"是解决图论中的"最短路径"问题的一种经典方法,适用于查找图中所有顶点之间的最短路径,尤其适用于稠密图。 文件名列表中的"data.m"可能包含了问题的数据输入,如变量、参数和初始条件。"Problem_1.m"到"Problem_4.m"分别对应于数学建模竞赛中的前四问,每问可能是一个独立的子问题,通过编写不同的MATLAB代码来解决。"floyd.m"则直接指向了弗洛伊德算法的实现,用于计算图中各节点间的最短路径。 在数学建模过程中,MATLAB作为一种强大的数值计算和编程环境,常被用来构建模型、求解问题和可视化结果。每个参赛团队会根据题目要求,利用这些工具和方法,结合实际背景,设计出合适的算法,最终形成完整的问题解决方案。 学习这部分内容有助于提升对数学建模的理解,掌握线性规划的求解技巧,以及如何应用图论算法解决实际问题。对于参加数学建模比赛的学生,不仅需要扎实的数学基础,还需要具备一定的编程能力,特别是用MATLAB进行数值计算和优化的能力。此外,了解如何将复杂问题转化为数学模型,并通过编程求解,也是现代科学研究和工程实践中的重要技能。
2024-07-09 10:07:07 6KB 数学建模 最短路径
1
按照矿山物联网统一时空模型的要求,开发了基于GIS的煤矿井下电力监控管理系统。该系统建立了各配电点和供电子系统设备的内部结构模型及其相互联系的地理拓扑模型,将井下电力系统CAD图转换为GIS拓扑图,将图形软件和数据库相结合来描述和管理各种电力设备的参数属性及几何拓扑关系;采用多世界空间关联表达,实现了井下配电网络及其资产"一张图"管理。
2024-07-07 20:20:58 624KB 井下电力监控 GIS 数据建模 资产管理
1
【标题】: "Python在数学建模中的应用" 在数学建模中,Python语言因其强大的数据处理、科学计算以及可视化能力而备受青睐。本学习笔记主要涵盖了如何利用Python进行有效的数学建模,其中包括了老哥网课中的实例代码,旨在帮助你深入理解和实践数学建模的各个环节。 【描述】: "数学建模是将实际问题抽象为数学模型,并通过模型求解以解决现实问题的一种方法。这份资料集合了数学建模比赛中的题目,以及解决这些问题的一些思路和参考源码。这些源码不仅是对问题解决方案的呈现,也是学习和提升Python编程技巧的宝贵资源。" 在数学建模比赛中,你需要面对各种各样的问题,例如社会、经济、环境等领域的复杂现象。资料中的"思路"部分可能包括了对问题的分析、假设的建立、模型的选择、求解策略等步骤的详细阐述。而"源码参考"则是将这些理论知识转化为实际操作的关键,它涵盖了数据预处理、算法实现、结果验证等阶段,展示了Python在数学建模中的实际应用。 【标签】: "数学建模" 数学建模涉及到多个学科的知识,如微积分、概率统计、线性代数等。Python库如NumPy用于数值计算,Pandas用于数据管理,Matplotlib和Seaborn用于数据可视化,Scipy和SciKit-Learn提供了各种优化和机器学习算法,它们在数学建模中都发挥着重要作用。 在学习过程中,你将逐渐掌握如何利用Python来构建和求解数学模型,如线性规划、非线性优化、时间序列分析、预测模型等。同时,你还会学习到如何评估模型的合理性,以及如何根据实际情况调整模型参数,以提高模型的预测精度和实用性。 通过这份资料,你不仅可以提升数学建模的理论水平,还能增强实际操作技能,为参与数学建模竞赛或解决实际问题打下坚实基础。无论你是初学者还是有一定经验的建模者,都能从中受益。 【压缩包子文件的文件名称列表】: "new22" 这个文件名可能表示这是一个未命名或正在更新的文件夹,通常在学习资料的整理过程中,会随着内容的不断补充和完善而更新。在这个文件夹中,你可能会找到不同阶段的学习笔记、代码示例、模型解析等各类文档,它们将构成一个完整的数学建模学习路径,帮助你在实践中不断进步。 总结来说,这份"Python在数学建模中的应用"学习资料是一份宝贵的资源,它结合了理论与实践,将带你走进数学建模的世界,体验从问题提出到解决方案的全过程,提升你的数学思维和编程能力。无论是为了比赛准备还是学术研究,都是不可多得的学习材料。
2024-07-04 11:26:58 49.54MB 数学建模
1
2024江西省数学建模 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx2024江西省数学建模交通信号灯管理题目建模解析.docx2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx
2024-07-03 14:12:31 85KB 交通物流 交通信号灯
1
在数学建模中,聚类分析是一种常用的数据分析方法,用于发现数据集中的自然群体或类别,无需预先知道具体的分类信息。本资料包是针对MATLAB实现聚类分析的一个实例集合,非常适合准备数学建模期末考试的学生参考。下面将详细阐述MATLAB中进行聚类分析的关键步骤和涉及的代码文件。 MATLAB是一种强大的编程环境,尤其在数值计算和科学计算方面,它提供了丰富的函数库支持各种数据分析任务,包括聚类分析。聚类分析通常包括预处理、选择合适的聚类算法和评估聚类结果等步骤。 1. **预处理**:数据预处理是聚类分析的重要环节,包括数据清洗(去除异常值)、归一化(使各特征在同一尺度上)等。在MATLAB中,可以使用`normalize()`函数进行数据标准化。 2. **选择聚类算法**:常见的聚类算法有K-means、层次聚类、DBSCAN、模糊C均值(Fuzzy C-Means, FCM)等。本资料包中的代码主要涉及模糊C均值聚类,这是一种灵活的聚类方法,允许数据点同时属于多个类别。 3. **FCM聚类算法**: - `fuzzy_sim.m`:该文件可能实现了模糊相似度矩阵的计算,模糊相似度是FCM聚类的基础,它衡量了数据点与聚类中心之间的关系。 - `fuzzy_figure.m`:这可能是用于绘制聚类结果的图形,帮助我们直观理解聚类效果。 - `fuzzy_cluster.m`:这个文件可能是FCM聚类的主要实现,包括初始化聚类中心、迭代更新直至收敛的过程。 - `fuzzy_bestcluster.m`:可能包含了选择最佳聚类数的策略,比如肘部法则或者轮廓系数。 - `fuzzy_main.m`:主函数,调用以上各部分,形成一个完整的FCM聚类流程。 - `fuzzy_stan.m`、`fuzzy_closure.m`、`fuzzy_synthesis.m`:这些可能是FCM算法中涉及到的特定辅助函数,如标准化、闭包运算或合成函数的计算。 4. **评估聚类结果**:`聚类分析.txt`可能包含了对聚类结果的评价指标,如轮廓系数、Calinski-Harabasz指数等,用于评估聚类的稳定性、凝聚度和分离度。 通过理解和学习这些代码,你可以掌握如何在MATLAB中实现聚类分析,特别是在面对复杂或模糊的数据分布时,模糊C均值聚类能够提供更灵活且有效的解决方案。在实际应用中,应根据数据特性选择合适的预处理方法和聚类算法,并结合业务背景对结果进行合理解释。
2024-07-03 11:10:31 4KB matlab 开发语言
1
Can I Model a Complex Takeoff Procedure?软件要求:stk version 10,Pro Integration Terrain,Imagery&Maps。本例利用stk,AMM,TIM创建一个复杂的起飞过程,地点是Travis空军基地MENTO1跑道
2024-07-02 14:58:05 10.52MB
1
2024 年江西省研究生数学建模竞赛题目投标中的竞争策略问题 答案解析.docx 招投标问题是企业运营过程中必须面对的基本问题之一。 现有的招投标平台有国家级的,也有地方性的。在招投标过程 中,企业需要全面了解招标公告中的相关信息,在遵守招投标 各种规范和制度的基础上,选择有效的竞争策略和技巧,以提 高中标概率。 在面对激烈的竞争时,企业需要制定差异化的竞争策略, 以突出自身的独特优势提高竞争力。现需要通过问题抽象建立 模型解决如下问题: 答案初步解析。
2024-07-02 14:24:39 104KB 数学建模
1
2024 年江西省研究生数学建模竞赛题目A题.pdf 2024 年江西省研究生数学建模竞赛题目A题.pdf 2024 年江西省研究生数学建模竞赛题目A题.pdf 2024 年江西省研究生数学建模竞赛题目A题.pdf2024 年江西省研究生数学建模竞赛题目A题.pdf2024 年江西省研究生数学建模竞赛题目A题.pdf 2024 年江西省研究生数学建模竞赛题目A题.pdf 2024 年江西省研究生数学建模竞赛题目A题.pdf2024 年江西省研究生数学建模竞赛题目A题.pdf 2024 年江西省研究生数学建模竞赛题目A题.pdf
2024-07-02 11:28:21 74KB 数学建模
1
基于Matlab的三相电压型PWM整流器建模与仿真
2024-07-01 21:43:06 142KB Matlab
1
电子取款机 这是Adji B. Dieng,Francisco JR Ruiz和David M. Blei题为“嵌入空间中的主题建模”的论文的代码。 (Arxiv链接: ://arxiv.org/abs/1907.04907) ETM在相同的嵌入空间中定义单词和主题。 ETM下的单词可能性是分类的,其自然参数由单词嵌入与其指定主题的嵌入之间的点积给出。 ETM是一个文档模型,可学习可解释的主题和单词嵌入,并且对于包含稀有单词和停用词的大量词汇表具有较强的鲁棒性。 依存关系 python 3.6.7 pytorch 1.1.0 数据集 所有数据集均经过预处理,可以在以下位置找到: (其中包含停用词,用于展示ETM停用词的鲁棒性。) 可以在文件夹“ scripts”中找到所有用于预处理给定ETM数据集的脚本。 20NewsGroup的脚本是独立的,因为它使用scikit-learn
2024-07-01 20:55:32 3.42MB Python
1