摘 要:本文简述了BP 神经网络的基本原理,提出了一种基于 BP 神经网络的客户流失 预测模型。实验表明,该模型的辨识精度高,能正确的对客户的需求进行评估,以减少客户 流失来提高企业的利润。 关键词:神经网络;BP 算法;客户流失;CRM
2022-12-15 22:02:08 302KB 神经网络 客户流失 预测 应用
1
本人发的csdn文章中matlab的.m文件,资源的具体内容可以看我发表的文章
2022-12-15 21:07:02 4KB 反步法 严格反馈 matlab仿真
1
关于模糊神经网络的基本概念介绍等等 包括模糊神经元 模糊神经网络 模糊BP网络 模糊联想记忆 等等
2022-12-15 15:18:33 1.19MB 模糊 神经网络 网络
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:31 2KB pytorch bp 曲线拟合 多项式拟合
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:31 2KB 深度学习 bp pytorch 曲线拟合
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:30 3KB 深度学习 bp pytorch 曲线拟合
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:29 1KB 深度学习 bp pytorch 曲线拟合
1
主要为大家详细介绍了Tensorflow卷积神经网络实例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2022-12-15 10:57:11 92KB Tensorflow 卷积神经网络
1
WebShell是网络入侵的常用工具,具有威害性大、隐蔽性好等特点。目前的检测手段较简单,容易被绕过,难以对付复杂灵活的 WebShell。针对这些问题,提出一种智能检测 WebShell 的机器学习算法,通过对已知存在WebShell和不存在WebShell的页面进行特征学习,完成对未知页面的预测,灵活性、适应性较好。实验证明,相比传统的WebShell检测方法,该算法的检测效率、正确率更高,同时也能以一定概率检测出新型的WebShell。
2022-12-14 21:37:36 670KB WebShell检测 矩阵分解 特征训练
1