该 Matlab 代码包实现了基于方向三次卷积插值的图像插值算法,该算法已在以下论文中进行了描述: D. Zhou、X. Shen 和 W. Dong, 使用定向三次卷积插值的图像缩放, IET 图像处理,卷。 6,第 6 期,第 627-634 页,2012 年。 这个包包括3个功能: DCC.m - 核心算法Calc_MSE_SNR.m - 计算 MSE、SNR 和 PSNR testDCC.m - 核心算法的测试函数 它还包括2折。 折叠的original_images包括纸张中使用的所有原始图像,折叠的result_images用于保存结果图像。 更多信息请联系:zdw@ncepu.edu.cn
2022-05-01 18:01:50 3.54MB matlab
1
全卷积神经网络FCN用于图像分割的工具箱(FCN for image segmentation)
2022-05-01 16:06:41 21KB cnn 人工智能 神经网络 深度学习
基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与识别 基于深度卷积神经网络的道路交通标志检测与
2022-05-01 16:06:32 6.52MB cnn 源码软件 综合资源 人工智能
基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像识别关键技术分析与研究 基于卷积神经网络的细粒度图像
2022-05-01 16:06:31 17.67MB cnn 文档资料 人工智能 神经网络
基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及应用 基于深度卷积神经网络的遥感影像目标检测技术研究及
2022-05-01 16:06:29 17.17MB cnn 目标检测 文档资料 人工智能
matlab如何敲代码此代码基于python3.0。此代码表示高光谱图像的超分辨率方法 如何使用它? 在main.py路径下打开CMD命令,然后根据训练顺序依次执行train_srresnet.sh,train_srganc.sh,test_srganc.sh。 用笔记本打开这些文件,将“ Python”之后的部分复制到CMD,然后按Enter执行。 我们从matlab中准备训练数据和测试数据,这些数据来自高光谱图像:华盛顿特区的购物中心,数据位于“数据”路径下,并且有很好的依据。 如何处理设置? 您需要设置的所有参数都在main.py中,根据您的培训需要更改变量“ Flags” 参数设置功能:(1)3DSRResnet模型:需要设置以下变量:Out_putdir模型:输出位置和文件名,默认为当前目录summary_dir:培训过程日志存储,默认情况下与output_dir相同,默认情况下位于该日志下output_dir的任务:SRResnet Batch_size:不需要忽略,默认为1倍和1张图片Num_resblock:建议小于或等于8 learning_rate:此变量是可调的,
2022-05-01 15:43:33 27KB 系统开源
1
1 绪论 2 1.1 字符识别概述 2 1.2 数字识别研究的目的及意义 2 1.3 手写数字识别的典型应用 3 1.4 国内外研究现状 4 1.5 手写体数字识别系统概述 5 1.6 本文内容安排 6 2 手写体数字识别中预处理技术 7 2.1 图像灰度化 7 2.2 图像二值化 8 2.3 图像反色 9 2.4 图像去噪声 10 2.5 数字分割 11 2.5 数字归一化 11 2.5 数字细化 13 3 手写体数字识别中特征值提取技术 16 3.1 特征提取概述 16 3.2 手写体字符特征提取方法概述 18 3.3 手写体数字识别中的结构特征提取 19 3.4 手写体数字识别中的统计特征提取 20 4 人工神经网络分类器 21 4.1 人工神经网络概述 21 4.2 BP神经网络概述 21 4.3 本文的神经网络结构设计 21 5 系统实现与结果分析 24 5.1 系统实现 24 5.1.1 系统实现环境 24 5.1.2 系统处理流程图及主要工作 25 5.1.3 系统界面 26 5.2 结果分析 26 6 结束语
2022-05-01 09:06:42 345KB matlab cnn 源码软件 开发语言
9.10 卷积网络的神经科学基础 卷积网络也许是生物学启发人工智能的 为成功的案例。虽然卷积网络也经过 许多其他领域的指导,但是神经网络的一些关键设计原则来自于神经科学。 卷积网络的历史始于神经科学实验,远早于相关计算模型的发展。为了确定关 于哺乳动物视觉系统如何工作的许多 基本的事实,神经生理学家 David Hubel 和 Torsten Wiesel 合作多年 (Hubel and Wiesel, 1959, 1962, 1968)。他们的成就 终获 得了诺贝尔奖。他们的发现对当代深度学习模型有 大影响的是基于记录猫的单个 神经元的活动。他们观察了猫的脑内神经元如何响应投影在猫前面屏幕上精确位置 的图像。他们的伟大发现是,处于视觉系统较为前面的神经元对非常特定的光模式 (例如精确定向的条纹)反应 强烈,但对其他模式几乎完全没有反应。 他们的工作有助于表征大脑功能的许多方面,这些方面超出了本书的范围。从 深度学习的角度来看,我们可以专注于简化的、草图形式的大脑功能视图。 在这个简化的视图中,我们关注被称为 V1 的大脑的一部分,也称为初级视觉 皮层(primary visual cortex)。V1 是大脑对视觉输入开始执行显著高级处理的第一 个区域。在该草图视图中,图像是由光到达眼睛并刺激视网膜(眼睛后部的光敏组 织)形成的。视网膜中的神经元对图像执行一些简单的预处理,但是基本不改变它 被表示的方式。然后图像通过视神经和称为外侧膝状核的脑部区域。这些解剖区域 的主要作用是仅仅将信号从眼睛传递到位于头后部的 V1。 卷积网络层被设计为描述 V1 的三个性质: 1. V1可以进行空间映射。它实际上具有二维结构来反映视网膜中的图像结构。例 如,到达视网膜下半部的光仅影响 V1 相应的一半。卷积网络通过用二维映射 定义特征的方式来描述该特性。 2. V1 包含许多简单细胞(simple cell)。简单细胞的活动在某种程度上可以概括
2022-04-30 16:42:16 37.32MB deep learning
1
石头剪刀布视觉 使用实时摄像头让机器查看人的手,并使用卷积神经网络实时识别手(石头、纸或剪刀)的姿势。 系统要求 相机设备(例如笔记本电脑的内置网络摄像头) Python(3.6 或更高版本) Numpy(1.13.3 或更高版本) TensorFlow(1.8 或更高版本) 以下任一情况: PyGame(1.9.3 或更高版本) OpenCV(3.2.0 或更高版本) PyGame 与 OpenCV 要访问相机并在屏幕上显示 GUI 窗口,需要一个能够完成所有这些操作的库。 该项目目前支持 2 个库:PyGame 和 OpenCV。 任何一种都可以使用。 为了帮助您选择,这里是一个比较: OpenCV 优势: 适用于各种平台,包括 Linux 和 Windows。 OpenCV缺点: 作为一个成熟的计算机视觉库,它对于访问相机的小任务来说过于庞大和繁重。 轮子大小
2022-04-30 15:45:32 4.95MB opencv machine-learning computer-vision tensorflow
1
北邮自动化+机器学习+实验+卷积神经网络+yhh+作业居多的老师+可直接运行提交
2022-04-30 13:06:13 1KB 北邮自动化 机器学习 CNN 实验作业