CNN-LSTM Matlab源码,稳定运行
2022-02-15 19:10:01 13.17MB cnn lstm matlab 人工智能
资料说明:包括数据+代码+文档+代码讲解。 1.项目背景 2.数据获取 3.数据预处理 4.探索性数据分析 5.特征工程 6.构建模型 7.结论与展望
2022-02-15 14:05:19 308.36MB python cnn 人工智能 卷积神经网络
资料说明:包括数据+代码+文档+代码讲解。 1.项目背景 2.数据获取 3.数据预处理 4.探索性数据分析 5.特征工程 6.构建CNN检测模型 7.模型评估 8.结论与展望
tensorflow给出的官方样例,基本的CNN网络解决mnist问题
2022-02-11 22:06:43 5KB tensorflow
1
自动目标识别(ATR)是雷达信息处理领域的重要研究方向。由于卷积神经网络(CNN)无需进行特征工 程,图像分类性能优越,因此在雷达自动目标识别领域研究中受到越来越多的关注。该文综合论述了CNN在雷达 图像处理中的应用进展。首先介绍了雷达自动目标识别相关知识,包括雷达图像的特性,并指出了传统的雷达自 动目标识别方法局限性。给出了CNN卷积神经网络原理、组成和在计算机视觉领域的发展历程。然后着重介绍了 CNN在雷达自动目标识别中的研究现状,其中详细介绍了合成孔径雷达(SAR)图像目标的检测与识别方法。接下 来对雷达自动目标识别面临的挑战进行了深入分析。最后对CNN新理论、新模型,以及雷达新成像技术和未来复 杂环境下的应用进行了展望。
2022-02-11 10:19:53 1.07MB 雷达 目标识别 CNN
1
面部识别 使用TensorFlow进行面部表情识别 介绍 深度学习的面部表情识别。 使用TensorFlow 1.4实现CNN(卷积神经网络)。 代号 Test_Images:用于测试模型的图像目录。 Train_Images:用于转换神经网络的图像目录。 collect_images.py:从Bing和Google收集面部图像。 convert_images.py:将图像文件(* .jpg,*。jpeg, .png)转换为数据集文件( .bin)。 dataset.py:用于训练或测试神经网络的数据集类。 cnn.py:创建CNN并对其进行训练或对图像进行分类。 运行代码示例 将图像转换为数据集 >>> import convert_images as ci >>> ci.IMAGES_DIR = './Train_Images' >>> ci.main('./train.b
1
try to fill this gap and study the effects of different covariates on the verification performance of four recent CNN models using the Labelled Faces in the Wild dataset
2022-02-10 20:03:37 5.28MB CNN 人脸识别
1
基于自动核分割和CNN模型的白细胞分类方法 概述: 这项工作是对白细胞(白血球)细胞核分段,定位和四种类型的白细胞(白血球)的细胞核分段算法.The完整描述的新的CNN模型为基础的分类,定位和CNN模型,可以发现。 这是工作摘要: 开发了一种用于WBC核分割的通用算法,并在四个WBC公开数据集中得到了验证。 根据细胞核和白细胞比率的统计分析确定白细胞(白细胞)的位置。 设计了一种新的CNN模型,以对四种类型的本地化和裁剪的WBC(白细胞)图像进行分类。 在“ wbc_nucleus_seg_localz”目录中共享WBC核的分割,定位和裁剪方法的代码。 请查看代码并在MATLAB上运行(推荐版本:MATLAB 2017a或2019a或更高版本)。 在“ wbc_classify_cnn_model”目录中共享裁剪的WBC图像的数据集生成,CNN模型的训练和训练后的模型的推断的代
2022-02-07 00:26:35 445.46MB JupyterNotebook
1
一个模型+主程序,然后里面还有CWRU轴承的数据,直接可以运行。 想修改模型可以在model.py里修改,这样就可以拿来自己搞点东西。
2022-02-05 17:06:58 17.51MB pytorch lstm cnn 深度学习
基于CNN和LSTM的脑电情绪识别_运用卷积神经网络_4D-CRNN,数据集为DEAP和seed。数据集采用的是脑电研究中最常用的DEAP和SEED数据集并且在两个数据集中都取得了很高的准确率。都达到了92%左右的准确率
2022-02-01 19:06:00 1.75MB lstm cnn 深度学习 人工智能