1维CNN demo, 可在本地运行, 初学代码, 写的不是很规范,
2022-03-28 10:56:43 4KB CNN
1
基于深度学习的转矩及MTPA点的预测 数据模型和采集的数据在数据库中,可以自行下载 深度模型由tensorflow+keras 搭建,其中模型的架构参考网上的的这个模型是用tensorflow编写的,代码读起来比较复杂,所以用keras进行改编。 推荐一个深度学习的社区 里面的深度学习的详细教程。 代码包括 基于LSTM预测电机转矩 基于CNN预测电机MTPA点 基于CNN的预测电机转矩 基于LSTM预测电机MTPA点
2022-03-27 14:36:54 85KB
1
CNN-VGG16图片性别年龄识别(说白了就是图片分类)-附件资源
2022-03-27 11:53:41 106B
1
wwu-ki_brainage 使用卷积神经网络(CNN)进行大脑年龄预测的教程 培训和评估是使用fastai_scans( )完成的,fastai是与3d医学图像配合使用的fastai扩展。 安装 1.)创建一个新的conda环境,安装Python 3.6并激活它 conda create -n wwuki_brainage python=3.6; conda activate wwuki_brainage 2.)在环境中安装pip conda install pip 3.)使用pip在该conda环境中安装软件包(将USER替换为您的用户名,将CONDA_DIR替换为.conda替换为Anaconda,将miniconda替换为miniconda)。 /home/USER/CONDA_DIR/envs/wwuki_brainage/bin/pip install git+git
2022-03-25 14:33:17 19.78MB JupyterNotebook
1
Convolutional Neural Networks for Small-footprint Keyword Spotting
2022-03-24 13:34:32 1.09MB cnn
1
基于电流模式SC-CNN的蔡氏电路的实现
2022-03-24 12:02:29 2.12MB 研究论文
1
文章目录TensorFlow2 学习——CNN图像分类1. 导包2. 图像分类 fashion_mnist3. 图像分类 Dogs vs. Cats3.1 原始数据3.2 利用Dataset加载图片3.3 构建CNN模型,并训练 TensorFlow2 学习——CNN图像分类 1. 导包 import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import StandardScaler from sklear
2022-03-24 11:39:57 98KB ens low ns
1
yolov4剪枝后预训练模型
2022-03-23 18:56:46 191.73MB cnn
1
音乐流派分类 使用1D和2D卷积神经网络比较使用频谱图输入和原始音频输入的音乐流派分类。 在此实验中,仅使用每个音频的前20秒。 每个音频样本被分为2秒音频的10个部分。 先决条件 - Python 2 - Numpy - Matplotlib - Scikit-learn - Scikit-plot - Keras - Tensorflow - Kapre - Librosa - ffmpeg 数据集 乔治·扎纳塔基斯(George Tzanetakis)设定的音乐流派数据。 数据集包含1000个音轨,每个音轨长30秒。 它包含10个流派,每个流派由100首曲目代表。 结果(10个纪元) 混淆矩阵 ROC曲线 测试精度 带一维CNN的原始音频输入 0.31 一维CNN的频谱图输入 0.7372 二维CNN的频谱图输入 0.686 参考: Dieleman,Sander和B
2022-03-23 15:04:32 682KB JupyterNotebook
1