This add-in to the PSO Research toolbox (Evers 2009) aims to allow an artificial neural network (ANN or simply NN) to be trained using the Particle Swarm Optimization (PSO) technique (Kennedy, Eberhart et al. 2001). This add-in acts like a bridge or interface between MATLAB’s NN toolbox and the PSO Research Toolbox. In this way, MATLAB’s NN functions can call the NN add-in, which in turn calls the PSO Research toolbox for NN training. This approach to training a NN by PSO treats each PSO particle as one possible solution of weight and bias combinations for the NN (Settles and Rylander ; Rui Mendes 2002; Venayagamoorthy 2003). The PSO particles therefore move about in the search space aiming to minimise the output of the NN performance function. The author acknowledges that there already exists code for PSO training of a NN (Birge 2005), however that code was found to work only with MATLAB version 2005 and older. This NN-addin works with newer versions of MATLAB till versions 2010a. HELPFUL LINKS: 1. This NN add-in only works when used with the PSORT found at, http://www.mathworks.com/matlabcentral/fileexchange/28291-particle-swarm-optimization-research-toolbox. 2. The author acknowledges the modification of code used in an old PSO toolbox for NN training found at http://www.mathworks.com.au/matlabcentral/fileexchange/7506. 3. User support and contact information for the author of this NN add-in can be found at http://www.tricia-rambharose.com/ ACKNOWLEDGEMENTS The author acknowledges the support of advisors and fellow researchers who supported in various ways to better her understanding of PSO and NN which lead to the creation of this add-in for PSO training of NNs. The acknowledged are as follows: * Dr. Alexander Nikov - Senior lecturer and Head of Usaility Lab, UWI, St. Augustine, Trinidad, W.I. http://www2.sta.uwi.edu/~anikov/ * Dr. Sabine Graf - Assistant Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=sabineg * Dr. Kinshuk - Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=kinshuk * Members of the iCore group at Athabasca University, Edmonton, Alberta, Canada.
2022-01-11 12:47:47 352KB pso算法 神经网络
1
基于改进粒子群算法的永磁同步电机参数识别,陶之雨,张波,在工程应用中,针对提高永磁同步电机参数识别的准确度问题,提出了改进适应度函数的粒子群优化算法。首先建立了包含电流控制和空
2022-01-10 10:21:48 315KB 首发论文
1
为了有效降低纳什均衡求解的复杂度并提高其计算效率,提出了一种粒子群算法近似求解混合战略纳什均衡的新方法。在介绍混合战略纳什均衡理论的基础上,提出了混合战略纳什均衡定义的计算形式,并据此提出了混合战略近似纳什均衡的概念,给出了粒子群算法求解混合战略近似纳什均衡的方法步骤。通过仿真验证了近似纳什均衡理论及粒子群求解过程的正确性,与原粒子群算法进行比较,得到新粒子群算法时效性更强的结论。
1
matlab开发-飞行粒子群定时蝴蝶群算法。蝴蝶粒子群优化算法的编码以函数问题为例。
2022-01-07 20:35:52 16KB 未分类
1
【优化选址】基于模拟退火结合粒子群算法求解分布式电源定容选址问题matlab源码.pdf
2022-01-07 18:27:41 985KB matlab代码
1
随着移动互联网的发展,基于嵌入式设备的云计算服务成为研究热点。在国内,嵌入式云计算目前正处于探索研究阶段,云资源管理调度是嵌入式云计算的核心技术之一,其效率直接影响嵌入式云计算系统的性能。为了提高云计算性能,本文提出一种基于粒子群优化算法的云计算任务调度模型。粒子群算法中粒子位置代表可行的资源调度方案,以云计算任务完成时间及资源负载均衡度作为目标函数,通过粒子群优化算法,找出最优资源调度方案。在matlab实验平台进行了仿真,通过大量数据模拟实验表明,该模型可以快速找到最优调度方案,提高资源利用率,具有较好的实用性和可行性。
1
matlab代码粒子群算法软计算优化工具箱(SCOT) 它能做什么: 1.一个工具箱,在一个保护伞下结合了六个优化算法。 2.每种算法都有单独的GUI。 3.结果的图形表示。 如何运行: 脚步: 打开MATLAB 打开包含所有必需文件的代码文件夹。 打开mastergui.m文件 点击运行 单击任何按钮以启动特定的算法GUI。 以下是运行不同算法的步骤:1.PSO(粒子群优化): 从功能下拉列表中选择其他功能。 选择优化类型(最小化/最大化)。 单击“绘制!”(将绘制2D和3D图形) 绘制后:您可以更改不同的参数(遗传极限,种群大小,精度)速度因子也可以更改单击运行(模拟将开始) 对于所有其他算法(GWO / SCA / MVO / WAO / ALO): 您可以更改以下参数(如果需要):粒子数迭代数下界和上界变量数目标函数(在coste函数文件中写入) 通过选择搜索历史记录:过去的结果将被存储并同时显示。 单击“开始优化”(图形仿真开始),将显示结果
2022-01-06 16:55:22 2.7MB 系统开源
1
hslogic算法仿真-PSO粒子群优化算法——对多个函数进行最优值搜索
2022-01-05 20:01:11 281KB PSO粒子群优化