为了利用ROC曲线下的面积(AUC),更好地评价多类SVM学习效果,提出了MOSMAUC(multi-objective optimizes multiclass SVM based on AUC)算法。该算法采用AUC作为评价标准,利用多目标优化算法作为SVM参数的优化方法,避免优化对象的AUC值过低问题,因为在多类分类学习中任何一个两类分类的AUC值太低,都会影响整体学习的效果。实验结果表明,提出的优化方法改进了算法的学习能力,取得了较好的学习效果。
1
: 乳腺癌是危害女性生命的一种恶性肿瘤。目前,在乳腺癌治疗方面,新辅助化疗获得了良好的成果,使众多女性恢复了健康。支持向量机在实际应用中有着良好的泛化和学习能力,并在商业、经济以及医疗等领域有所应用。采用决策树分类器和支持向量机分类器,结合乳腺癌新辅助化疗随访记录数据,预测乳腺癌患者新辅助化疗的预后状态,实验结果表明使用支持向量机的效果好于使用决策树的效果,在支持向量机中使用径向基核函数时获得了最高的准确率,达到了84.08%,由此可见,该分类方法可能成为一种乳腺癌新辅助化疗的预后状态的有效预测工具。
2021-10-17 15:55:19 369KB 乳腺癌
1
为了提高煤矿主扇风机故障诊断的准确性,将网格搜索法和支持向量机(SVM)应用到主扇风机的故障诊断中。首先,建立主扇风机运行故障的知识库,并将采集到的主扇风机振动信号进行小波消澡和归一化;然后,设计了网格搜索参数优化SVM的主扇风机故障诊断模型。最后,通过工程现场提取的数据进行实验验证,并与遗传算法和粒子群算法寻优的时间和诊断结果准确率进行比较。实验结果表明,网格搜索法SVM参数优化非常适合于煤矿主扇风机的故障系统中。
1
主要为大家详细介绍了Python中支持向量机SVM的使用方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2021-10-17 15:18:50 177KB Python 向量机 SVM
1
支持向量机,用于特征提取、预测、目标识别等问题的解决实例,有详细的代码辅助说明。
2021-10-17 14:12:09 23KB 向量机 特征提取 目标识别 实例
1
经典书籍《统计学习方法》李航,第7章 支持向量机(SVM)-Python代码
2021-10-16 23:01:03 13KB Python Code
1
摘要:分类问题是商业业务中遇到的主要问题之一。本文对三种主要技术展开讨论,逻辑回归(LogisticRegression)、决策树(DecisionTrees)和支持向量机(SupportVectorMachine,SVM)。分类问题是我们在各个行业的商业业务中遇到的主要问题之一。在本文中,我们将从众多技术中挑选出三种主要技术展开讨论,逻辑回归(LogisticRegression)、决策树(DecisionTrees)和支持向量机(SupportVectorMachine,SVM)。上面列出的算法都是用来解决分类问题(SVM和DT也被用于回归,但这不在我们的讨论范围之内)。我
2021-10-16 17:01:10 498KB 逻辑回归、决策树和支持向量机
1
对多分类支持向量机几种算法进行分析, 系统地比较了各种算法的性能
2021-10-16 12:40:35 127KB SVM 多分类 一对多 一对一
1
本代码用于二维数据不能采用简单线性划分去做划分的情况,采用python,支持向量机方式实现,对数据进行二分类,并自动绘制出三维立体图像。内含数据集txt格式,可直接运行。
2021-10-16 12:17:21 2KB python svm 支持向量机
1
支持向量机分类——基于乳腺组织电阻抗特性的乳腺癌诊断的Matlab程序代码 本资源仅供学习交流,侵删
2021-10-15 22:11:25 408KB matlab
1