Network Analysis is the process of listening to and analyzing network traffic. Network analysis offers an insight into network communications to identify performance problems, locate security breaches, analyze application behavior, and perform capacity planning. Wireshark(r), formerly Ethereal, is the world's most popular network analyzer and offers an open source solution for IT professionals. TIPS: Learn insider tips to spot performance issues fast - no more finger pointing! CASE STUDIES: From "Death by Database" to "Troubleshooting Time Syncing," 45 case studies offer insight into real world performance and security situations solved with Wireshark. CERTIFICATION PREP: Each chapter includes exam objectives, review questions and answers to prepare you for the Wireshark Certified Network Analyst(tm) Exam. [image1] Learn how to create graphs that expose the cause of poor performance such as packet loss, high latency, low packet sizes, slow clients, overloaded receivers and more! [image2] Use coloring rules and the Expert Info Composite to highlight suspect traffic and avoid the "needle in a haystack" feeling when analyzing traffic. [image3] Learn insider tips and techniques to troubleshoot and secure a network more efficiently and accurately. About the Author: Laura Chappell is the founder of Wireshark University(tm) and Chappell University(tm). Ms. Chappell is also the author of the Wireshark University instructor-led training courses and the Wireshark Certified Network Analyst(tm) Exam. As a highly successful and sought after network analyst and speaker, her goal is to make network analysis an understood "first responder" tool to save time, money and aggravation. Ms. Chappell offers hundreds of online and onsite courses every year through Chappell University. For more information, email info@chappellu.com. File in Computing Section with Networking/Security/Certification.
2021-11-16 15:08:48 25.38MB Wireshark
1
Wireshark 101 Essential Skills for Network Analysis(2nd) 英文无水印pdf 第2版 pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2021-11-16 15:02:09 40.44MB Wireshark 101 Essential Skills
1
speedtest想必大家也早就知道了吧,用来在linux下测试网速。只有一个python的小脚本:speedtest.py,需要python2.7版本的支持。
2021-11-16 10:41:50 60KB speedtest linux network python
1
network information theory(网络信息论)第三章课后题答案
2021-11-15 21:24:32 196KB 网络信息论 network information theory
1
crt高亮显示代码包,真实有效!购买后,免费私聊教学,谢谢光顾。
2021-11-15 19:01:24 1KB crt8.0
请注意,该项目仍处于测试阶段。 请报告您遇到的任何问题或建议。 我们将尽力Swift解决它们。 也欢迎捐款! 神经先知 基于PyTorch的和启发的基于神经网络的时间序列模型。 文献资料 我们目前正在改进。 有关NeuralProphet的直观介绍,请查看的演讲。 讨论与帮助 讲解 有几个可以帮助您入门。 请参阅我们的以获取更多资源。 最小的例子 from neuralprophet import NeuralProphet 导入软件包后,可以在代码中使用NeuralProphet: m = NeuralProphet () metrics = m . fit ( df , freq
1
马里奥matlab代码域对抗神经网络(浅层实现) 此python代码已用于进行以下JMLR论文的第5.1节中介绍的实验。 Yaroslav Ganin,Evgeniya Ustinova,Hana Ajakan,Pascal Germain,Hugo Larochelle,FrançoisLaviolette,Mario Marchand和Victor Lempitsky。 神经网络领域专业训练。 机器学习研究杂志,2016。 内容 DANN.py包含学习算法。 fit()函数是本文算法1的非常简单的实现。 experiments_amazon.py包含在Amazon情感分析数据集上执行的示例(文件夹data包含数据集文件的副本)。 计算目标测试风险(请参见论文表1)和Proxy-A-Distance (请参见论文图3)。 experiments_moons.py包含用于生成本文图2的代码(关于相互缠绕的月亮玩具问题的实验)。 mSDA.py包含用于生成mSDA表示的函数(这些是Chen et al。(2012)Matlab代码的文字翻译)
2021-11-15 15:57:52 4.09MB 系统开源
1
广域网 规划 设计 网络 IEEE05 网络设计 网络协议,网络 ,文档,PPT
2021-11-14 18:46:27 2.63MB network IEEE05 WAN
1
网络表示学习 重新实现了四种网络表示学习算法 ,根据腾讯微博数据集评估,AUC:0.7548 ,对腾讯微博数据集进行评估,AUC:0.7608 ,在腾讯微博数据集上评估,AUC:0.7553 ,对Cora数据集进行评估,预测准确性:0.805 用法 转到源目录,使用以下命令运行: python3 deepwalk_for_tencent.py [or line_for_tencent.py, node2vec_for_tencent.py, grarep_for_cora.py] 要求 麻木 科学的 网络x Gensim 火炬 scikit学习
2021-11-13 15:54:03 2.95MB network-representation-learning Python
1
tcpdump源碼 適合逆向程序員學習研究範例 tcpdump是強大的命令行數據包分析器
2021-11-13 12:01:55 2.34MB tcpip network
1