针对车牌识别系统的实际应用, 利用车牌区域的边缘梯度特征、几何形状特征、颜色特征、灰度纹理特征定位车牌, 然后校正车牌图像的颜色及倾斜度; 基于灰度投影法, 对普通及武警车牌均提出了有效字符分割方案, 通过自适应判别去除因字符断裂粘连、特殊字符等造成的干扰; 通过基于多特征值提取的神经网络方法初识别车牌; 最后将人眼的视觉特性用于模板匹配法, 解决易混淆字符及污损车牌的问题。通过大量实验证明, 该方法对车牌颜色、拍摄角度、光照条件等限制较少, 适用范围广、识别率高, 有较强的实用性。
1
一个基于matlab的车牌识别源程序,可以运行,功能完善,内涵字符模板。
2022-06-07 09:54:38 206KB 车牌识别 车牌定位 字符分割
1
支持向量机_with_python 在本笔记本中,我们介绍了支持向量机(SVM)算法,这是一种功能强大但简单的监督学习方法,用于预测数据。 对于分类任务,SVM算法尝试将特征空间中的数据划分为不同的类别。 默认情况下,这种划分是通过构造最佳分割数据的超平面来执行的。 为了进行回归,构造了超平面以映射数据分布。 在这两种情况下,这些超平面均以非概率方式映射线性结构。 但是,通过采用内核技巧,我们可以将非线性数据集转换为线性数据集,从而使SVM可以应用于非线性问题。 SVM是功能强大的算法,已得到广泛普及。 这部分是由于它们在高维特征空间中有效,包括那些特征数与实例数相似或略微超过实例数的问题。 与具有大量数据集的内存需求很高的KNN不同,SVM可以提高内存效率,因为仅需要支持向量即可计算超平面。 最后,通过使用不同的内核,SVM可以应用于各种学习任务。 另一方面,这些模型是黑匣子,很难解释
2022-06-06 21:07:08 84KB JupyterNotebook
1
分享课程——《Pytorch生物医学视觉深度学习入门与实战--豪华版》,课程包括图像分类,语义分割,目标检测三大领域,共7个完整项目!提供所有的代码和数据下载!
2022-06-06 19:14:44 567B Pytorch 目标检测 语义分割 图像分类
1
1、利用VGGnet提取图片特征 2、利用segnet进行decoder 3、使用tensorflow里面kereas里面神经网络八步法,一步一步教你训练自己的模型 4、提供了用于训练和验证的数据集 5、网络注释清晰,方便二次开发和修改
2022-06-05 22:11:05 146.51MB 语义分割 斑马线分割 tensorflow
通过深度学习模型对室内楼道环境的视觉信息进行处理,帮助移动机器人在室内楼道环境下自主行走。为达到这个目的,将楼道环境对象分为路、门、窗户、消防栓、门把手和背景六类,通过图像的语义分割实现对象识别。在对楼道环境的六类对象进行分割的实验中发现,由于门把手比起其他对象小很多,影响了对它的识别效果;将六分类模型改为“5 2”分类模型,解决了这个问题。分类模型的基础是全卷积神经(FCN)网络,可以初步实现图像的分割。为了提高FCN网络的分割效果,从三个方面进行了实验研究:a)取出FCN网络的多个中间特征层,进行多层特征融合;b)考虑到移动机器人行走过程中视觉信息的时间序列特点,将递归神经网络(RNN)的结构纳入到FCN网络中,构成时间递归的t-LSTM网络;c)考虑到二维图像相邻像素之间的依赖关系,构成空间递归的s-LSTM网络。这些措施都有效地提高了图像的分割效果,实验结果表明,多层融合加s-LSTM的结构从分割效果和计算时间方面达到综合指标最佳。
1
使用件利用json文件将大图分割小图, 使用是请注意需要修改文件路径。 Python代码添加注释,适合学习巩固Python基础
2022-06-04 12:07:50 2KB Python split
1
随着三维扫描技术的迅猛发展, 点云数据的数据量变得异常庞大, 这对点云计算的性能提出了更高的要求。因此, 如何有效提高算法的执行效率一直是该领域的研究热点和难点。日益增大的数据量隐藏了丰富的三维(3D)形状模型, 将形状模型参与到点云计算过程中, 为提高点云计算的执行效率提供了一种新的方法和思路。利用3D几何特征分析技术, 获取与形状相关的特征参数, 并使其参与到点云分割过程中, 提出了形状分割方法。利用八叉树算法组织点云数据, 发现数据之间的相邻关系, 依靠点云数据的密度自适应地双向线性调整八叉树并建立数据索引。使用规则图形建立3D形状模型库, 实现模型与分割区域的匹配, 进而提取分割区域的形状参数, 为提高点云数据计算的精度和速度奠定基础。在分割效果和分割时间上, 对比了不同算法, 验证了基于形状的点云分割算法的可行性以及稳健性。
2022-06-03 21:04:41 11.69MB 图像处理 点云数据 区域分割 主成分分
1
SLIC超像素分割MATLAB代码SLIC 超像素 该存储库提供了带有 Python 和 Matlab 接口的简单线性迭代聚类 (SLIC) 算法的代码。 在这两种情况下,都提供了一个演示文件,应该很容易使用。 这两个版本都可以为灰色、彩色以及具有任何其他数量通道的图像生成超像素。 如果您使用代码,请引用以下出版物: “SLIC 超像素与最先进的超像素方法相比” ,R. Achanta、A. Shaji、K. Smith、A. Lucchi、P. Fua、Sabine Süsstrunk,IEEE 模式分析和机器智能交易(卷: 34 , Issue: 11 , 2012年11月 ) @ARTICLE{slic_2012, author={R. {Achanta} and A. {Shaji} and K. {Smith} and A. {Lucchi} and P. {Fua} and S. {Süsstrunk}}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, title={SLI
2022-06-03 18:16:46 990KB 系统开源
1