一、按输入信号的特征分类 恒值控制系统(恒值调节系统,自动调节系统) 程序控制系统 随动系统(伺服系统) 二、按描述元件的动态方程分类 线性系统 非线性系统 三、按信号的传递是否连续分类 连续系统 离散系统 四、按系统的参数是否随时间而变化分类 定常系统 时变系统 第四节 自动控制系统的分类
2023-03-13 17:07:42 485KB 综合资料
1
基于最小错误概率的贝叶斯分类器
2023-03-13 10:50:06 1KB 贝叶斯
1
学习SVM 的很好的文档,可以好好交流一下
2023-03-13 08:47:40 485KB 决策树 SVM分类
1
matlab开发-K阈值系统。K门限译码系统
2023-03-12 23:17:36 14KB 未分类
1
文本分类 使用Python进行文本分类的简单实践 文件 内容 罗基奥.py 使用 Rocchio 算法的文本分类。 每个文档都在一个向量空间中表示。 在训练阶段,找到每类文档的质心。 在测试阶段,计算测试文档到每个质心的距离,并将文档分配到最近的质心类。 天真的eBayes.py 使用朴素贝叶斯算法的文本分类。 每个文档在一个向量空间中表示。 在训练阶段,学习字典每个术语的类先验和类条件概率。 在测试阶段,文档被分配给给定测试文档具有最大后验概率的类。 这是一个 IPython 笔记本,展示了使用 scikits-learn 机器学习库的完整但简单的文本分类管道。 管道从文本清理和标记化开始,然后将每个文档投影到一个向量空间中。 Tfidf 加权用于对向量进行归一化。 然后测试一些分类器; 使用它们的默认参数。 最后,在蛮力参数网格搜索上使用 10 倍交叉验证,找到了一些分类器的最
2023-03-12 19:06:52 1.16MB Python
1
样例如下: TD 矿业工程 TD-0 矿业工程理论与方法论 TD-05 矿业工程与其他学科的关系 TD-9 矿山经济 TD91 选矿理论 TD912 矿石性质及类型 TD913 矿石可选性的研究 共计42354条分类,excel表两列,一列的编号,另一列是名称。 按大类字母顺序排列。
1
信用评估是商业银行等机构防范风险的重要途径,为了提高信用评估的准确率,使用随机森林(RF)来建立风险评估模型。针对随机森林模型的性能与参数的选择和数据集不平衡比例密切相关,提出了一种基于随机森林的组合分类算法(KM-GA-RF)。以UCI数据库中的German数据集进行研究,通过K-means算法对标签进行类分解。而对于哪个类分成的簇数(ki)以及随机森林算法自身的参数:树数(n_estimators)、特征数(max_features),使用改进的遗传算法对其进行优化选取。实验结果表明,基于随机森林的组合优化模型与传统RF以及其他算法进行比较,RF的预测精度高于支持向量机等算法,达到0.765,而提出的组合优化模型的预测精度为0.815,提高了5%。
1
GWO优化LSTM分类,这个代码分了两类。
2023-03-12 01:10:56 19.24MB 机器学习 算法 GWO LSTM
1
利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码。 实现功能: 基础功能利用pytorch实现图像分类 包含带有warmup的cosine学习率调整 warmup的step学习率优调整 多模型融合预测,加权与投票融合 利用flask + redis实现模型云端api部署(tag v1) c++ libtorch的模型部署 使用tta测试时增强进行预测(tag v1) 添加label smooth的pytorch实现(标签平滑)(tag v1) 添加使用cnn提取特征,并使用SVM,RF,MLP,KNN等分类器进行分类(tag v1)。 可视化特征层。 转载:https://github.com/lxztju/pytorch_classification
2023-03-11 16:54:10 3.03MB 预测模型 图像分类 pytorch
1
先安装环境 ----> 使用data_classify.py文件进行训练集与测试集分割 ----> 在进行训练即可 数据准备:当前数据存放 data_name 文件夹内 文件夹名就是类别名,n个类别就是n个文件夹 目录主要结构组成: model_AlexNet.py ----> 自己建的AlexNet模型(可选其他模型) model_Vgg16.py ----> pytorch自带更改的模型(可选其他模型) train.py ----> 用于训练模型 test.py ----> 用于测试模型 辅助文件: data_classify.py ----> 将 data_name内的类别分为训练集与测试集。 ​ 注意查看代码内容,包含argparse模块 清除单通道图像 -----> 数据清洗,处理异常图像 旧版数据加载 -----> 用于学习图像 数据加载
1