jevois:JeVois智能机器视觉框架
2022-02-11 17:05:33 53.62MB python linux machine-learning arm
1
卫星图像深度学习:通过卫星和航空影像进行深度学习的资源
1
Raster Vision是一个开放源代码Python框架,用于在卫星,航空和其他大型影像集(包括倾斜的无人机影像)上构建计算机视觉模型。 它允许用户(不需要成为深度学习专家!)可以快速重复地配置执行机器学习管道的实验,包括:分析训练数据,创建训练芯片,训练模型,创建预测,评估模型和捆绑模型文件和配置,以便于部署。 内置支持使用PyTorch进行芯片分类,对象检测和后端语义分割。 可以在内置支持使用在云中运行的CPU和GPU上执行实验。 该框架可扩展到新的数据源,任务(例如实例分段),后端(例如Detectron2)和云提供商。 有关更多详细信息,请参见。 建立 可以通过多种方法来设置Raster Vision: 要从头开始构建Docker映像,请克隆此仓库后,运行docker/build ,然后使用docker/run容器。 Docker映像已发布到 raster-vision图像的标签确定它是哪种图像: pytorch-*标签用于运行PyTorch容器。 每次合并到master ,我们都会发布一个新标签,并使用提交哈希的前7个字符进行标签。 要使用最新版本,请拉l
1
Machine Learning Design Patterns
2022-02-06 18:16:52 15.91MB MachineLearning DesignPatterns
1
Written in an easily accessible style, this book provides the ideal blend of theory and practical, applicable knowledge. It covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python.
2022-02-05 22:06:16 53.71MB Machine Learning an Algorithmic
1
数据挖掘与文本分析,类似于英文杂志的阅读科普材料,针对UK的语言机器发展史
2022-02-05 09:14:42 524KB 数据挖掘 人工智能
1
A First Course in Machine Learning, Second Edition (Machine Learning & Pattern Recognition) by Simon Rogers, Mark Girolami 2016 | ISBN: 1498738486 | English | 427 pages | PDF | 161 MB "A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC." ―Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden "This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade." ―Daniel Barbara, George Mason University, Fairfax, Virginia, USA "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts." ―Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark "I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength…Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months." ―David Clifton, University of Oxford, UK "The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." ―Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK "This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning…The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective." ―Guangzhi Qu, Oakland University, Rochester, Michigan, USA
2022-02-05 04:55:55 161.23MB Machine Learning MATLAB Python
1
A First Course in Machine Learning MATLAB 2009
2022-02-05 00:23:17 7.13MB Machine Learning
1
星际争霸AI 希望路过的同学,顺手给JStarCraft框架点个Star,算是对作者的一种鼓励吧! JStarCraft AI是一个机器学习的轻量级框架。遵循Apache 2.0协议。 在学术界,大规模研究人员使用的编程语言是Python。 在工业界,大规模开发人员使用的编程语言是Java。 JStarCraft AI是一个基于Java语言的机器学习工具包,由一系列的数据结构,算法和模型组成。 目标是作为在学术界与工业界的机器机器研究研发的相关人员之间的主轴。 作者 洪钊桦 电子邮件 , JStarCraft AI架构 JStarCraft AI框架各个模块之间的关系: JStarCraft AI特性 属性与特征 连续 离散 模块与实例 选择,排序与切割 2.环境(environment) 串行计算 并行计算 CPU计算 GPU计算 3.数学(数学) 算法(算法) 微积分(微积分) 相关性(correlation) 距离(distance) 相似度 分解(分解) 核技巧(内核) 概率 标量 方法 矩阵 张量 单元 表单 4.调制标准(调制解调器) 线性模型(linear) 近邻
2022-01-27 10:21:12 1.11MB java machine-learning tree algorithm
1