贝叶斯网络推理机BNJ-Java实现,在自己的研究工作中采用贝叶斯网络作为工具,需要实现原型系统或者做实验的有用
2021-11-26 20:28:03 641KB 贝叶斯网络 推理机 Java
1
颜色分类leetcode 在分类中使用贝叶斯神经网络进行不确定性量化:在生物医学成像分割中的应用 该存储库提供了论文“在分类中使用贝叶斯神经网络的不确定性量化:在生物医学图像分割中的应用”的 Keras 实现。 本文扩展了在 . 如果您想引用此作品,请引用扩展版本。 在这个 repo 中,我们使用两个生物医学成像分割数据集展示了所提出的方法:ISLES 和 DRIVE 数据集。 有关更多详细信息,请参阅 和 。 我还强烈建议您查看使用 Walter de Back 的 DRIVE 数据集的良好实现。 []。 例子 一旦你有一个训练有素的贝叶斯神经网络,建议的不确定性量化方法很简单!!! 在一个二进制segmentaion中,一个具有维度(估计数,特征维度)的numpy数组p_hat ,然后可以通过以下代码获得认知不确定性和任意不确定性。 epistemic = np.mean(p_hat**2, axis=0) - np.mean(p_hat, axis=0)**2 aleatoric = np.mean(p_hat*(1-p_hat), axis=0) 所提出的方法与 Kendall
2021-11-26 09:02:03 865KB 系统开源
1
这是一个 C++ 的朴素贝叶斯文本分类器库,可以对文本中的垃圾邮件、基因、情感类型进行分类。 自 1950 年代以来,朴素贝叶斯已被广泛研究。 它在 1960 年代初期以不同的名称引入文本检索社区,并且仍然是文本分类的流行(基线)方法,判断文档属于一个类别或另一个类别的问题(例如垃圾邮件或合法,体育或政治等)以词频为特征。 通过适当的预处理,它在该领域具有竞争力,包括支持向量机在内的更先进的方法。它还在自动医疗诊断中得到应用。
2021-11-25 19:55:21 19KB 开源软件
1
用朴素的贝叶斯构建垃圾邮件过滤器
2021-11-25 09:35:58 5KB
1
PyInference-библиотекадлянечеткогоиБайесовскоговывода。 Официальныйсайт- PyInference将在Python 2.7上运行。 PyInference依赖于尽可能少的包。 目前仅严格要求numpy和matplotlib。 安装 带点子: $ pip安装pyinference 或下载源代码并运行安装文件: $ python setup.py安装
2021-11-25 09:01:40 1.24MB Python
1
参考文献:Bayesian Modeling of Dynamic Scenes for Object Detection
2021-11-24 22:44:35 15KB Bayesian Modeling
1
吉布斯采样matlab代码Latent-Dirichlet-Allocation-LDA-(MATLAB中的代码) 自然语言处理算法 概率生成模型 Latent Dirichlet Allocation根据主题比例和单词比例对文档进行分类的方法 贝叶斯推断使用折叠的吉布斯采样 与传统的吉布斯采样器相比,收敛速度更快,错误率低 参考文献:托马斯·格里菲斯(Thomas L. Griffiths)和马克·史蒂佛斯(Mark Steyvers)发现科学课题(2004) 这里考虑的词汇大小为16,并使用4x4图像表示。 图像中的每个像素代表词汇表中的一个单词。 像素越亮,在文档/主题中的频率越高。 下图显示了8个主题作为单词分布的基本事实。 现在,使用这些主题生成了500个长度为100的文档。 图像下方显示了生成的文档示例。 现在,在这些生成的文档上运行了LDA(超过500次迭代),并发现了主题。 下面的屏幕快照显示了在初始迭代和最终迭代中发现的主题。 Theta地面真相值 范例文件 初始Phi迭代 最终Phi迭代 经过最终的迭代,发现的主题为: 它包含以下功能: 1)代码LDA Matlab
2021-11-24 19:45:37 683KB 系统开源
1
人工智能实验三朴素贝叶斯C++.zip
2021-11-23 19:21:54 12KB 人工智能
1
在VC6.0编译环境下使用C++编写的朴素贝叶斯分类程序
2021-11-23 10:40:36 5.09MB 朴素贝叶斯分类程序(C++)
1