二维紧凑变分模式分解 (2D-TV-VMD) 空间紧凑和光谱稀疏的图像分解和分割将多维信号(例如图像)分解为空间紧凑、潜在重叠的本质上波状的模式,使这些组件可用于进一步的下游分析。 通过这种分解,可以进行空频分析,解调,局部方向估计,边缘和拐角检测,纹理分析,降噪,修复或曲率估计。 我们的模型将输入信号分解为具有窄傅立叶带宽的模式; 为了应对与窄带宽不兼容的尖锐区域边界,我们引入了二进制支持函数,它们在窄带模式下充当图像重组的掩码。 L1 和 TV 术语促进稀疏性和空间紧凑性。 将支持函数约束到信号域的分区,我们有效地获得了基于光谱均匀性的图像分割模型。 通过将多个子模式与单个支持函数耦合在一起,我们能够将图像分解为多个晶粒。 我们的高效算法基于变量分裂和交替方向优化; 我们采用类似 Merriman-Bence-Osher 的阈值动力学,在稀疏促进项下通过支持函数边界的平均曲率有效地处理
2022-01-21 14:59:12
1.84MB
matlab
1