传统非局部平均(Non-Local Means, NLM)图像去噪算法的像素相似性度量可靠性较差,其关键滤波参数选取与优化值偏差较大。针对上述问题,提出了一种改进的NLM图像去噪算法。首先,滤除方法噪声中的噪声分量,保留有用图像信息;然后,联合去噪结果与处理后的方法噪声重新定义NLM算法的相似权函数,更好地利用原图像的信息;最后,采用噪声标准差二次函数的方式设置滤波参数,相比于传统的线性正比方式选取参数,这种选取方式在不同噪声强度下均能获得较优的参数值。对几个标准测试图像的去噪结果表明,提出的改进NLM算法获得了较好的去噪效果,优于相比较的几种方法。
1