Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems, metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among the others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging pre- sentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and social sciences.
2021-06-01 11:08:37 23.31MB Complex Networks Principles Method
1
Here you find all the data sets described and analysed in the textbook: "Complex Networks: Principles, Methods and Applications", V. Latora, V. Nicosia, G. Russo (Cambridge University Press, 2017) For each data set you find below a brief description and a list of salient properties (number of node, number of edges, etc.). All data sets All the data sets of the textbook are available for download in a single compressed file: All the data sets in the book (zip) The archive contains one folder for each dataset, The file README.txt in each folder contains some relevant information about the corresponding data set.
2021-06-01 11:02:57 148.55MB Complex networks Principles Methods
1
Tanenbaum《计算机网络》第五版英文版 非扫描,带目录
2021-05-31 22:35:12 5.73MB 计算机网络
1
Convolutional deep belief networks on CIFAR-10.pdf
2021-05-31 14:03:44 544KB 模式识别
1
自动驾驶汽车网络和控制单元的冒险尝试
2021-05-31 12:02:56 4.05MB 电动汽车网络安全
Multi-column Deep Neural Networks for Image Classification
2021-05-30 21:38:28 2.12MB Ai
1
本科生论文:带有数据重载的量子图像分类器设计量子卷积和数据重载分类器方案 一个用于完成我的大学论文的资料库,该资料库是带有数据重新上传的量子图像分类器设计,量子卷积和数据重新上传分类器方案。 顾问: 和 抽象的 随着工业和学术界的问题越来越难解决,对计算能力的需求不断增长。 诸如分子等大型量子系统的仿真或求解大型线性系统之类的应用程序的计算成本可能非常昂贵。 这已经成为量子计算发展的原因之一,量子计算是一种利用量子系统的特性和理论进行信息处理的计算方法。 量子计算机向我们保证,这类问题将以指数级的速度提高。 尽管近年来量子计算机的发展Swift发展,但是理论和技术挑战仍然是大规模量子计算机的障碍。 当今存在的量子计算机具有严格的限制,例如由于过程中的噪声而导致量子位有限和门操作受限。 变分量子算法(VQA)已经成为解决这些局限性的有前途的策略之一。 已经提出了采用该策略的各个领域的应用
1
深度学习示例 使用 Python 进行深度学习示例。 要求 numpy==1.18.5 scipy==1.5.2 tensorflow==2.2.0 pandas==1.0.5 matplotlib==3.2.2 scikit_learn==0.23.2 谷歌合作实验室 您可以在 Colab 上运行笔记本: 示例列表 数据集 任务 神经网络结构/细胞类型 回归 稠密 分类 稠密 图像分类 卷积 文本分类 循环,双向循环 时间序列预测 格鲁乌 异常检测 香草自动编码器,变体自动编码器 我的另一个存储库中的示例 数据集 笔记本 任务 神经网络结构 - 图像分类 - 医学诊断 卷积神经网络 资源 https://keras.io/examples/
1
心电图分类 该代码包含一种基于多个支持向量机(SVM)的自动分类心电图(ECG)方法的实现。 该方法依赖于随后的搏动及其形态之间的时间间隔来进行ECG表征。 使用基于小波,局部二进制模式(LBP),高阶统计量(HOS)和几个幅度值的不同描述符。 有关详细说明,请参见以下文章: : 如果您在出版物中使用此代码,请引用为: @article{MONDEJARGUERRA201941, author = {Mond{\'{e}}jar-Guerra, V and Novo, J and Rouco, J and Penedo, M G and Ortega, M}, doi = {https://doi.org/10.1016/j.bspc.2018.08.007}, issn = {1746-8094}, journal = {Biomedical Signal Processing and Control}, pages = {41--48}, title = {{Heartbeat classification fusing temporal and morphologica
1
一种面向移动社交网络的云视频分发机制,陆佃杰,胡斌,基于云平台的视频传输网络C-VDNs(Cloud-based Video Delivery Networks)最近获得了相当多的关注。不同于传统的视频分发网络,C-VDNs可以提供可�
2021-05-28 17:41:35 764KB Computer Application Technology
1