机器学习(卷积神经网络)优秀论文。吐血总结。肢体识别、VGG19深度网络应用框架。
2021-12-30 12:37:10 14.37MB 机器学习
1
安全帽作为作业工人最基本的个体防护装备,对作业人员的生命安全具有重要意义.但是部分作业人员安全意识缺乏,不佩戴安全帽行为时常发生.本文聚焦于复杂场景下对工作人员是否佩戴安全帽的实时检测.YOLO (You Only Look Once)是当前最为先进的实时目标检测算法,在检测精度和速度上都取得了良好的效果,将YOLO应用于安全帽检测.针对未佩戴安全帽单类检测问题,修改分类器,将输出修改为18维度的张量.基于YOLOv3在ImageNet上的预训练模型,对实际场景下采集到的2010张样本进行标注并训练,根据损失函数和IOU曲线对模型进行优化调参,最终得到最优的安全帽检测模型.实验结果表明,在2000张图片测试集上取得了98.7%的准确率,在无GPU环境下平均检测速度达到了35 fps,满足实时性的检测要求,验证了基于YOLOv3安全帽检测方法的有效性.
1
预训练的卷积神经网络
2021-12-29 19:12:02 2KB 人工智能 深度学习
1
图像分类的性能在很大程度上取决于特征提取的质量。卷积神经网络能够同时学习特定的特征和分类器,并在每个步骤中进行实时调整,以更好地适应每个问题的需求。本文提出模型能够从遥感图像中学习特定特征,并对其进行分类。使用UCM数据集对inception-v3模型与VGG-16模型进行遥感图像分类,实验结果表明,本文提出的模型在训练时间和分类准确率上都优于现有算法。
1
LHCnn:一种利用卷积神经网络的新型高效多元时间序列预测框架
2021-12-29 09:56:48 540KB 研究论文
1
卷积神经网络matlab代码 不需要配置,直接将工作目录设为这个压缩包的解压完的目录下就行,matlab直接运行
2021-12-28 20:53:13 14.04MB 卷积神经网络 matlab代码
1
The first CNN appeared in the work of Fukushima in 1980 and was called Neocognitron. The basic architectural ideas behind the CNN (local receptive fields,shared weights, and spatial or temporal subsampling) allow such networks to achieve some degree of shift and deformation invariance and at the same time reduce the number of training parameters. Since 1989, Yann LeCun and co-workers have introduced a series of CNNs with the general name LeNet, which contrary to the Neocognitron use supervised training. In this case, the major advantage is that the whole network is optimized for the given task, making this approach useable for real-world applications. LeNet has been successfully applied to character recognition, generic object recognition, face detection and pose estimation, obstacle avoidance in an autonomous robot etc. myCNN class allows to create, train and test generic convolutional networks (e.g., LeNet) as well as more general networks with features: - any directed acyclic graph can be used for connecting the layers of the network; - the network can have any number of arbitrarily sized input and output layers; - the neuron’s receptive field (RF) can have an arbitrary stride (step of local RF tiling), which means that in the S-layer, RFs can overlap and in the C-layer the stride can differ from 1; - any layer or feature map of the network can be switched from trainable to nontrainable (and vice versa) mode even during the training; - a new layer type: softmax-like M-layer. The archive contains the myCNN class source (with comments) and a simple example of LeNet5 creation and training. All updates and new releases can be found here: http://sites.google.com/site/chumerin/projects/mycnn
2021-12-28 17:21:22 1.07MB CNN 卷积神经网络
1
详细解读了卷积神经网络是如何工作的,从CNN卷积层、激活层、池化层到全链接层,及多层CNN作用进行了通熟易懂的讲解
2021-12-28 16:59:53 3.46MB CNN 深度学习
1
第一章回顾了理解卷积神经网络的动机;  第二章阐述了几种多层神经网络 ,并介绍当前计算机视觉领域应用中最成功的卷积结 构;  第三章具体介绍了标准卷积神经网络中的各构成组件 ,并从生物学和理论两个角度分 析不同组件的设计方案 ;  第四章讨论了当前卷积神经网络设计的趋势及可视化理解卷积神经网络的相关研究工 作 ,还重点阐述了当前结构仍存在的一些关键问题
2021-12-28 16:54:12 1.44MB CNN
1
详情参考https://github.com/LianHaiMiao/pytorch-lesson-zh/,这个老师讲的特别详细,或者参考https://blog.csdn.net/a1103688841/article/details/89222614
2021-12-28 15:46:44 8.14MB pytorc 卷积神经网络
1