模式识别-贝叶斯估计—手写数字概率模型参数估计与识别代码,附带测试集和训练集,带有详细注释及各部分具体流程分类和说明。有利于读者弄懂原理和具体流程
1
【手写数字识别】基于贝叶斯分类器实现手写数字识别matlab源码含GUI.md
2021-12-04 17:40:49 11KB 算法 源码
1
第六章 朴素贝叶斯分类 6.1 朴素贝叶斯分类数学基础 1.贝叶斯定理 假设对于某个数据集,随机变量 C 表示样本为 C 类的概率,F1 表示测试样本某特征出现的概率,套 用基本贝叶斯公式,则如下所示: 上式表示对于某个样本,特征 F1 出现时,该样本被分为 C 类的条件概率。 对于该公式,需要熟知的概念: 先验概率(Prior):P(C)是 C 的先验概率,可以从已有的训练集中计算分为 C 类的样本占所有样本的 比重得出。 证据(Evidence):即上式 P(F1),表示对于某测试样本,特征 F1 出现的概率。同样可以从训练集中 F1 特征对应样本所占总样本的比例得出。 似然(likelihood):即上式 P(F1|C),表示如果知道一个样本分为 C 类,那么他的特征为 F1 的概率是 多少 对于多特征而言: 贝叶斯定理是基于假设的先验概率给定假设下观察到不同数据的概率,提供了一种计算后验概率的方 法 6.2 朴素贝叶斯分类 1.思想基础 对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项 属于哪个类别。 2.假设条件 1)特征之间相互独立 2)每个特征同等重要 3.朴素的概念
2021-12-04 13:24:12 4.91MB 数据挖掘算法 Python
1
朴素贝叶斯分类--R语言应用-附件资源
2021-12-04 12:29:01 106B
1
近年来随着Internet的大规模普及和企业信息化程度的提高,有越来越多的信息积累,而需要信息的人还没有特别方便的工具去从来自异构数据源的大规模的文本信息资源中提取符合需要的简洁、精炼、可理解的知(毕业设计,课程设计,请联系,Q Q:1728327660)识,文本挖掘正是解决这一问题的一个方法。    本课题研究基于贝叶斯的文本分类系统,可以用于以下领域和系统中:企业知识门户、信息增值服务、智能搜索引擎 、数字图书馆 、情报分析 、信息安全和过滤、电子商务系统。文本自动分类不需人工干预的自动分类技术,有效提高非结构化信息资源的加工效率。利用朴素贝叶斯分类文法的分类器,分析已经手动分类的文本,根据文本内容计算分类条件概率,再利用训练好的分类器分析未分类的文本,根据分类器算出的所属领域概率最大的进行分类(毕业设计,课程设计,请联系,Q Q:1728327660)。
1
基于朴素贝叶斯分类算法
2021-12-03 15:36:31 1.59MB 贝叶斯
1
基于贝叶斯压缩感知的平面阵列失效单元诊断,首先进行难过了理论分析,其次进行了电磁仿真,最后通过实际测试进行了验证。
2021-12-03 15:21:54 7.01MB 阵列诊断 压缩感知 贝叶斯
1
贝叶斯分类实验指导书 实验目的 加深对贝叶斯原理的理解 熟悉python的集成开发环境 掌握贝叶斯分类器的实现—西瓜判别
2021-12-03 08:08:57 830KB 贝叶斯分类
1
该作业资源包含程序源码和readme文档。 本程序是使用 VC++ 6.0 编程工具编写,编程语言为C++。 本程序实现了手写数字识别功能。在程序灰色区域中手写一个阿拉伯数字(0~9),程序可自动识别出您所书写的数字。 程序所在目录为 "手写数字识别程序\Release\DSPLIT.exe" 。 这个问题主要归结于识别功能的实现,本人使用的分类器基本的方法有两类: 一、模板匹配分类法; 二、贝叶斯分类法。 其中模板匹配分类法是采用特征值最小距离判别法。 而贝叶斯分类法有三种不同的分类实现,分别为: 1.基于二值数据的贝叶斯分类实现, 2.基于最小错误率的贝叶斯分类实现, 3.基于最小风险的贝叶斯分类实现。
1
GAMP_SBL 通过广义近似消息传递进行计算有效的稀疏贝叶斯学习 这是GAMP-SBL算法的实现。 可以在以下找到更多详细信息 李福伟,方军,段慧平,陈智,李宏斌,“通过广义近似消息传递进行计算有效的稀疏贝叶斯学习”提交给arXiv。 可以在上找到正式发表的论文
2021-12-02 17:12:28 2KB MATLAB
1