NanoDet 超快速,轻量的无锚物体检测模型。 在移动设备上实时。 :high_voltage: 超轻量级:模型文件只有1.8 MB。 :high_voltage: 超快:移动ARM CPU上97fps(10.23ms)。 :smiling_face_with_sunglasses: 易于培训:GPU内存成本比其他型号低得多。 GTX1060 6G上可使用批处理大小= 80。 :smiling_face_with_sunglasses: 易于部署:基于ncnn推理框架提供C ++实现和Android演示。 消息!!! [2021.03.12]将变压器编码器应用于NanoDet! 引入NanoDet-t ,用TAN(变压器关注网络)替代NanoDet-m中的PAN,在COCO val 2017上获得21.7 mAP(+1.1)。有关更多详细信息,请检查 。 [2021.03.03]更新了Nanodet-m-416 COCO预训练模型。 可可mAP(0.5:0.95)= 23.5 。 在下载。 [2021.02.03]支持和主干。 请检查。
2021-06-03 20:30:22 1.27MB android deep-neural-networks deep-learning pytorch
1
机器学习专家Jason Brownlee所著,详细讲解了创造lstm的起因,优势,反向传播算法,数据集的归一化,Vanilla LSTMs,Stacked LSTMs,CNN LSTMs原理及原码实现。让您一本书就可以基本完全了解lstm!!
2021-06-03 14:07:54 6.74MB 序列训练 自然语言处理 lstm rnn
1
计算机视觉Github开源论文
2021-06-03 09:09:11 1.38MB 计算机视觉
1
计算机视觉Github开源论文
2021-06-03 09:09:09 704KB 计算机视觉
1
计算机视觉Github开源论文
2021-06-03 09:09:02 2.17MB 计算机视觉
1
计算机视觉Github开源论文 U-GAT-IT Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
2021-06-03 09:09:01 9.13MB 计算机视觉
1
知乎转引的此文介绍了来自北京航空航天大学刘祥龙副教授研究团队的最新综述文章 **Binary Neural Networks: A Survey**,合作者包括中国电子科技大学的宋井宽教授和意大利特伦托大学计算机系主任 Nicu Sebe 教授。在阅读基础上,做了.md的笔记。 摘要如下: 神经网络二值化能够**最大程度地降低模型的存储占用和模型的计算量**,将神经网络中**原本 32 位浮点数参数量化至 1 位定点数**,**降低了模型部署的存储资源消耗,同时极大加速了神经网络的推断过程**。但二值化会不可避免地导致**严重的信息损失**,其**量化函数不连续性也给深度网络的优化带来了困难**。 近年来许多算法被提出致力于解决上述问题,并取得了令人满意的进展。在本文中,我们对这些方法进行了全面的总结和概括,主要分为**直接量化的朴素二值化方法**,以及使用**最小化量化误差**、**改善网络损失函数和减小梯度误差**等技术的**改进二值化方法**。 本文还调研了二值神经网络的**其他实用方面**,例如**硬件友好的设计和训练技巧**。然后,我们对**图像分类,目标检测和语义分割**等不同任务进行了**评估和讨论**。最后,本文展望了**未来研究可能面临的挑战**。
2021-06-02 20:10:50 38KB 二值神经网络
1
数据科学家,学生,机器学习工程师
2021-06-02 14:08:30 7.01MB LSTM 长短时记忆 PDF 机器学习
1
汽车CAN网络安全威胁实例及短期对策选择 Security threats to automotive CAN networks—Practical examples and selected short-term countermeasures
2021-06-02 09:03:41 849KB 汽车网络安全
人脸识别论文,手动翻译,花费两天时间希望可以帮助到大家 DeepID3: Face Recognition with Very Deep Neural Networks Yi Sun1 Ding Liang2 Xiaogang Wang3,4 Xiaoou Tang1,4
2021-06-01 21:44:44 4.81MB 论文翻译
1