Java中的文本编辑器,能够在用户键入时检测歧视性表达式。 当基于内部本体的分析器检测到潜在的歧视性表达时,通过在文本中强调相关词来建议用户。 当光标放在潜在的区分性表达式上方时,还会向用户显示有关该问题的描述性消息。
2021-04-29 22:03:59 7.09MB 开源软件
1
The main goal of this book is to introduce the reader to the use of R as a tool for data mining. R is a freely downloadable1 language and environment for statistical computing and graphics. Its capabilities and the large set of available add-on packages make this tool an excellent alternative to many existing (and expensive!) data mining tools.
2021-04-29 09:23:19 44.09MB R-Language Statistics
1
This book has two principal aims: to teach scientific programming and to introduce stochastic modelling. Stochastic modelling, indeed mathematical modelling more generally, is intimately linked to scientific programming because the numerical techniques of scientific programming enable the practical application of mathematical models to real-world problems. In the context of stochastic modelling, simulation is the numerical technique that enables us to analyse otherwise intractable models.
2021-04-29 09:21:28 7.97MB R-Language Simulation
1
AT&T汇编必备资料,详细讲解AT&T格式的汇编程序的基本原理、机制、概念、语法、实现,包含各种示例程序,是一本不可多得的AT&T汇编的参考书。
2021-04-29 02:17:11 6.61MB AT&T 汇编 Professional Assembly
1
通过患者健康问卷9和自然语言处理对抑郁症进行分析
1
抑郁症被认为是造成全球残疾的最大原因,也是自杀的主要原因。 它会影响书面文本中反映的语言使用情况。 我们研究的主要目标是检查Reddit用户的帖子,以发现任何可能揭示相关在线用户的抑郁态度的因素。 为此,我们采用自然语言处理(NLP)技术和机器学习方法来训练数据并评估我们提出的方法的效率。 我们确定在沮丧帐户中更常见的术语词典。 结果表明,我们提出的方法可以显着提高性能精度。 最好的单一功能是使用支持向量机(SVM)分类器的双字母组,可以以80%的准确度和0.80 F1的分数检测抑郁症。 多层感知器(MLP)分类器最成功地证明了组合特征(LIWC + LDA + bigram)的强度和有效性,从而使抑郁症检测的顶级性能达到91%的准确度和0.93 F1分数。 根据我们的研究,可以通过选择适当的特征及其多个特征组合来实现更好的性能改进。
2021-04-28 17:58:34 3.5MB Natural language processing; machine
1
OntoNotes-5.0-NER-BIO 这是CoNLL-2003格式的版本,带有OntoNotes 5.0版本NER的BIO标记方案。 此格式化的版本基于的说明以及在此存储库中创建的新脚本。 简单地说,名为“(Yuchen Zhang,Zhi Zhong,CoNLL 2013),提出了针对OntoNotes 5.0数据的Train-dev-split,并提供了将其转换为CoNLL 2012格式的脚本。 但是,结果不在BIO标记方案中,不能直接用于许多序列标记体系结构中,例如BLSTM-CRF。 此回购协议通过直接生成BIO格式简化了预处理,您可以在实验中使用它们。 步骤1:获取官方的O
1
ARM C 扩展的编译支持文档,值得参考,对于程序优化的人员来说,必看文档。
2021-04-27 10:01:48 1.36MB ARM 嵌入式 C 优化
MAMS for ABSA 此存储库包含论文“ EMCLP-IJCNLP 2019, 挑战数据集和基于方面的情感分析的有效模型”的数据和代码。 彩信 MAMS是用于基于方面的情感分析(ABSA)的挑战数据集,其中每个句子包含至少两个具有不同情感极性的方面。 MAMS数据集包含两个版本:一个用于方面术语情感分析(ATSA),另一个用于方面类别情感分析(ACSA)。 要求 pytorch==1.1.0 spacy==2.1.8 pytorch-pretrained-bert==0.6.2 adabound==0.0.5 pyyaml==5.1.2 numpy==1.17.2 scikit-learn==0.21.3 scipy==1.3.1 快速开始 将经过预训练的GloVe( )文件glove.840B.300d.txt放在./data文件夹中。 修改config.py以选择任务,模型和
1
通过Emit,实现了从Snail脚本到exe转换的框架原型。 测试代码: a = 12321 print(a)
2021-04-26 11:59:01 123KB 编译器
1